Skip to main content
Log in

The Simulated Magnetocaloric Properties for Ni0.5Cu0.25Zn0.25Fe2O4 Nanoferrites

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The magnetocaloric (MC) properties of Ni0.5Cu0.25Zn0.25Fe2O4 (NCZFO) nanoferrite samples prepared under different annealing temperatures were simulated by phenomenological model. The results indicate that MC properties of NCZFO nanoferrites change none monotonically with annealing temperature. Furthermore, the range of temperatures between 407 and 515 K are suitable for NCZFO nanoferrites to be used as an effective material in magnetic refrigeration (MR). It is concluded that NCZFO nanoferrites are very practical MC materials in MR for high temperature applications like automotive, aerospace, and food industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Salem, B. I., Hemeda, O. M., Mansour, S. F., & Hamad, M. A.: Electrical properties and positron annihilation studies for LaxCoFe2-xO4. Appl. Phys. A Mater. Sci. Process. 124, 621 (2018)

  2. Hemeda, O. M., Henaish, A. M. A., Mansour, S. F., Sharshar, T., Hamad, M. A. : Electrical properties and positron annihilation studies of nano-crystalline CoLaxFe2−xO4 prepared by ceramic method. Appl. Phys. A Mater. Sci. Process. 126, 141 (2020)

  3. Hemeda, O.M., Tawfik, A., El-Sayed, A.H., Hamad, M.A.: J. Supercond. Nov. Magn. 28, 3629 (2015)

  4. Hemeda, O.M., Mahmoud, K.R., Sharshar, T., Elsheshtawy, M., Hamad, M.A.: J. Magn. Magn. Mater. 429, 124 (2017)

    Article  ADS  Google Scholar 

  5. El-Sayed, A.H., Hemeda, O.M., Tawfik, A., Hamad, M.A.: Remarkable magnetic enhancement of type-M hexaferrite of barium in polystyrene polymer. AIP Adv. 5, 107131 (2015)

  6. El-Sayed, A.H., O. M. Hemeda, Hamad, M.A., Mohamed, A. M.:The Enhancement of Thermomagnetic Properties for BaFe12O19 by Trivalent Ion Substitutions J. Supercond. Nov. Magn. 33, 769–773 (2020)

  7. El-Sayed, A.H., Hemeda, O.M., Tawfik, A., Hamad, M.A.: J. Magn. Magn. Mater. 402, 105 (2016)

    Article  ADS  Google Scholar 

  8. El-Sayed, A. H., Hemeda, O. M., Tawfik, A., Hamad, M. A.: Superior values of the initial permeability for electrodeposited Ni–Co–P-BaFe12O19 composite films. Phase Trans. 90, 325–334 (2017)

  9. El-Sayed, A. H., Hemeda, O. M., Tawfik, A., & Hamad, M. A.: Simulation of Wasp-Waisted Magnetic Hysteresis Loop for NiCoP-Coated BaFe 12 O 19–Polystyrene Bilayer Composite Film. J. Supercond. Nov. Magn. 29, 2451–2453 (2016)

  10. Tawfik, A., Hemeda, O.M., El-Sayed, A.H., Hamad, M.A.: Initial magnetic permeability ofMtype BaFe12O19-polystyrene composite. J. Supercond. Nov. Magn. 4, 2085–2088 (2016)

  11. Hemeda, O. M., Henaish, A. M. A., Salem, B. I., El-Sbakhy, F. S., Hamad, M. A.: Appl. Phys. A Mater. Sci. Process. 126, 121 (2020)

  12. Hamad, M.A., El-Sayed, A.H., Hemeda, O.M., et al.: Mater Res Exp. 3, 036104 (2016)

  13. Mahmoud, K. R., Hemeda, O. M., Sharshar, T., & Hamad, M. A.: Strong Correlations Between Positron Annihilation Spectroscopy and ESR for Mn0.1MgxZn0.9-xFe2O4 Ceramics. M.A. J. Supercond. Nov. Magn 30, 3143–3154 (2017)

  14. Hemeda, O. M., El-Sayed, A. H., Tawfik, A., Hamad, M. A.: Improvement of the thermal properties of a polystyrene via inclusion of barium hexaferrite particles. Mater. Res. Exp. 3, 075302 (2016)

  15. Rao, P.V.S., Anjaneyulu, T., Reddy,M.R.: J. Korean Phys. Soc. 72, 593 (2018)

  16. Hcini, S., Boudard, M., Dhahri, A., Zemni, S., Bouazizi, M.L.: Mater. Res. Express. 6, 066108 (2019)

    Article  ADS  Google Scholar 

  17. Hamad, M.A.: J. Supercond. Nov. Magn. 31, 337 (2018)

  18. Mechi, N., Alzahrani, B., Hcini, S., Bouazizi, M.L., Dhahri, A.: Phase Transit. 91, 559 (2018)

    Article  Google Scholar 

  19. Hamad, M.A.: Magnetocaloric effect in Sr0.4Ba1.6−xLaxFeMoO6. J. Supercond. Nov. Magn. 27, 1777 (2014)

  20. Hamad, M.A.: Magnetocaloric effect in Fe3.5Co66.5Si12−xGexB18 ribbons. J. Supercond. Nov. Magn. 29, 2867–2871 (2016)

  21. Hamad, M.A.: J. Adv. Ceram. 2, 213–217 (2013)

  22. El-Sayed, A.H., Hamad, M.A.: J. Supercond. Nov. Magn. 31, 4091–4094 (2018)

  23. Hamad, M.A.: J. Supercond. Nov. Magn. 28, 3329–3333 (2015)

    Article  Google Scholar 

  24. El-Sayed, A.H., Hamad,M.A.: J. Supercond. Nov. Magn. 31, 1895 (2018)

  25. Hamad, M.A.: Process. Appl. Ceram. 9, 11 (2015)

    Article  Google Scholar 

  26. Dhahri, A., Dhahri, E., Hlil, E.K.: Appl. Phys. A. 116, 2077 (2014)

    Article  ADS  Google Scholar 

  27. Hamad, M.A.: Monte Carlo calculations of magnetic heat capacity of La0.7Sr0.3−xMnO3−δ . J. Supercond. Nov. Magn. 28, 2525–2528 (2015)

  28. Hamad, M.A.: J. Supercond. Nov. Magn. 27, 2569 (2014)

    Article  Google Scholar 

  29. Hsini, M., Hcini, S., Zemni, S.: J. Supercond. Nov. Magn. 31, 81 (2018)

    Article  Google Scholar 

  30. Messaoui, I., Riahi, K., Cheikhrouhou-Koubaa, W., Koubaa, M., Cheikhrouhou, A., Hlil, E.K.: Ceram. Int. 42, 6825 (2016)

    Article  Google Scholar 

  31. Dhahri, A., Jemmali, M., Dhahri, E., Valente, M.A.: Alloys Compd. 638, 221–227 (2015)

    Article  Google Scholar 

  32. Ewas, A.M.: Ceram. Int. 43, 7660 (2017)

    Article  Google Scholar 

  33. Chen, L., Li, T., Cao, S., Yuan, S., Hong, F., Zhang, J.: J. Appl. Phys. 111, 103905 (2012)

    Article  ADS  Google Scholar 

  34. Hamad, M.A.: Int. J. Thermophys. 34, 2144 (2013)

    Article  ADS  Google Scholar 

  35. Hamad, M.A.: J. Supercond. Nov. Magn. 28, 3365 (2015)

    Article  Google Scholar 

  36. Hamad, M.A.: Magnetocaloric effect in La1−xCexMnO3. J. Adv. Ceram. 4, 206–210 (2015)

    Article  Google Scholar 

  37. El-Sayed, A.H., Hamad, M.A.: Magnetocaloric effect in La1−xLixMnO3. J. Supercond. Nov. Magn. 31, 4167–4171 (2018)

    Article  Google Scholar 

  38. El-Sayed, A.H., Hemeda, O.M., Hamad, M.A., Mohamed, A.M.: Thermomagnetic properties of La0.67Sr0.33MnO3 nanofibers. Eur. Phys. J. Plus. 134, 227 (2019)

    Article  Google Scholar 

  39. Hamad, M.A.: Low magnetic field magnetocaloric effect in Gd5−xEuxGe4. J. Supercond. Nov. Magn. 29, 539–1543 (2016)

    Article  Google Scholar 

  40. Hamad, M.A.: Calculations of the low field magnetocaloric effect in Fe4MnSi3Bx. J. Supercond. Nov. Magn. 28, 2223 (2015)

    Article  Google Scholar 

  41. El-Sayed, A.H., Hamad, M.A.: Tailoring thermomagnetic properties in Pb (Zr0.52Ti0.48)O3–Ni (1−x)ZnxFe2O4. Phase Trans. 92, 517–524 (2019)

    Article  Google Scholar 

  42. Hamad, M.A.: Theoretical investigations on electrocaloric properties of relaxor ferroelectric 0.9PbMg1/3Nb2/3O3−0.1PbTiO3 thin film. J. Comput. Electron. 11, 344–348 (2012)

    Article  Google Scholar 

  43. Hamad, M.A.: Theoretical work on effect of pressure on magnetocaloric properties of La0.7Ca0.3MnO3. Int. J. Thermophys. 36, 2748–2754 (2015)

    Article  ADS  Google Scholar 

  44. Hamad, M.A.: Giant isothermal entropy change in (111)-oriented PMN-PT thin film. J. Adv. Dielect. 4, 1450026 (2014)

    Article  ADS  Google Scholar 

  45. Hamad, M.A.: Theoretical investigations on electrocaloric properties of (111)-oriented PbMg1/3Nb2/3O3 single crystal. J. Adv. Ceram. 2, 308 (2013)

    Article  Google Scholar 

  46. Hamad, M.A.: Lanthanum concentration effect of magnetocaloric properties in LaxMnO3−δ. J. Supercond. Nov. Magn. 28, 173 (2015)

    Article  Google Scholar 

  47. Hamad, M.A.: Theoretical investigations on electrocaloric properties of PbZr0.95Ti0.05O3 thin film. Int. J. Thermophys. 34, 1158–1165 (2013)

    Article  ADS  Google Scholar 

  48. Hamad, M.A.: Effects of addition of rare earth on magnetocaloric effect in Fe82Nb2B14. J. Supercond. Nov. Magn. 28, 3111–3115 (2015)

    Article  Google Scholar 

  49. Hamad, M.A.: Investigations on electrocaloric properties of [111] oriented 0.955PbZn 1/3Nb2/3O3–0.045PbTiO3 single crystals. Phase Trans. 86, 307–314 (2013)

    Article  Google Scholar 

  50. Hamad, M.A.: J. Supercond. Nov. Magn. 27, 269–272 (2014)

    Article  Google Scholar 

  51. Hamad, M.A.: Appl. Phys. Lett. 102, 142908 (2013)

    Article  ADS  Google Scholar 

  52. El-Sayed, A.H., Hamad, M.A.: Nickle concentration effect on low magnetic field magnetocaloric properties for Ni2+xMn1−xGe. J. Supercond. Nov. Magn. 32, 1447–1450 (2019)

    Article  Google Scholar 

  53. Hamad, M.A.: Detecting giant electrocaloric properties of ferroelectric SbSI at room temperature. J Adv Dielect. 3, 1350008 (2013)

    Article  Google Scholar 

  54. Hamad, M.A.: Process. Appl. Ceram. 11, 225–229 (2017)

    Article  Google Scholar 

  55. Hamad, M.A.: J. Supercond. Nov. Magn. 29, 1539 (2016)

    Article  Google Scholar 

  56. El-Sayed, A.H., Hamad, M.A.: Phenomenological modeling of magnetocaloric effect for in La0.7SrxMnO3−δ. J. Supercond. Nov. Magn. 31, 3357–3360 (2018)

    Article  Google Scholar 

  57. Hamad, M.A.: Process. Appl. Ceram. 10, 33 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Hamad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamad, M.A., Hemeda, O.M. & Mohamed, A.M. The Simulated Magnetocaloric Properties for Ni0.5Cu0.25Zn0.25Fe2O4 Nanoferrites. J Supercond Nov Magn 33, 2521–2525 (2020). https://doi.org/10.1007/s10948-020-05495-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05495-1

Keywords

Navigation