Skip to main content
Log in

Prediction of magnetocaloric effect using a phenomenological model in (x) La0.6Ca0.4MnO3/(1 − x) La0.6Sr0.4MnO3 composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This research paper presents a theoretical work on the magnetocaloric properties of (SC.4-2) composite obtained by mixing citric-gel La0.6Ca0.4MnO3 (S0C1) and La0.6Sr0.4MnO3 (S1C0), with mole fractions [0.875 (S0C1)/0.125 (S1C0)]. This mixture was then fritted at 900 °C. The magnetization of the composite goes in good agreement with the following relationship \(M(\mathrm{S}\mathrm{C}.4{\text{-}}2)=0.865\times M(\mathrm{S}0\mathrm{C}1)+0.135 \times M(\mathrm{S}1\mathrm{C}0)\), where (0.865, 0.135) are the corresponding weight fractions to mole fractions (0.875, 0.125) of parent compounds [(S0C1) (S1C0)]. Resting upon this equality, the magnetic entropy change and the specific heat of composite were predicted at a constant field and pressure. The variation of the magnetic entropy \(\left|{\Delta S}_{M}\right|\) and the heat capacity \({\Delta C}_{P,H}\) as a function of temperature of the two parent compounds (S0C1) and (S1C0), with a phenomenological model, were obtained in our previous research work. The values of the maximum magnetic entropy change \({\left|\left({\Delta S}_{M}\right)\right|}_{\mathrm{m}\mathrm{a}\mathrm{x}}\), full width at half-maximum \({\updelta} T_{\mathrm{F}\mathrm{W}\mathrm{H}\mathrm{M}}\) and relative cooling power (RCP), at several magnetic field variations, were determined. In addition to the S0C1 mother compound, the SC.4-2 composite displays the highest value of RCP, providing an estimate of the quantity of the heat transfer between the hot (Thot) and cold (Tcold) ends during one refrigeration cycle. At a later stage, the study of the dependence on temperature of the magnetic entropy of (x) S0C1/(1 − x) S1C0 composites reveals that the optimum composition stands for x = 0.4. Indeed, it gives comparable contributions of two parent compounds, leading to a practically uniform variation of entropy over a wide temperature range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A.M. Tishin, Y.I. Spichkin, The magnetocaloric effect and its applications (IOP Publishing, London, 2003)

    Google Scholar 

  2. A. Tozri, E. Dhahri, E.K. Hlil, Mater. Lett. 64, 2138 (2010)

    Google Scholar 

  3. K.A. Gschneidner Jr., V.K. Pecharsky, Annu. Rev. Mater. Sci. 30, 387 (2000)

    ADS  Google Scholar 

  4. J. Dhahri, A. Dhahri, M. Oumezzine, E. Dhahri, J. Magn. Magn. Mater. 320, 2613 (2008)

    ADS  Google Scholar 

  5. E. Brück, J. Phys. D Appl. Phys. 38, R381 (2005)

    ADS  Google Scholar 

  6. M. Bejar, R. Dhahri, E. Dhahri, M. Balli, E.K. Hlil, J. Alloys Compd. 442, 136 (2007)

    Google Scholar 

  7. G.F. Wang, L.R. Li, Z.R. Zhao, X.Q. Yu, X.F. Zhang, Ceram. Int. 40, 16449 (2014)

    Google Scholar 

  8. M. Bejar, R. Dhahri, F. El Halouani, E. Dhahri, J. Alloys Compd. 414, 31 (2006)

    Google Scholar 

  9. X. Zhang, J. Fan, L. Xu, D. Hu, W. Zhang, Y. Zhu, Ceram. Int. 42, 1476 (2016)

    Google Scholar 

  10. J. Shamberger, F.S. Ohuchi, Phys. Rev. B 79, 144407 (2009)

    ADS  Google Scholar 

  11. J.S. Amaral, N.J.O. Silva, V.S. Amarala, J. Magn. Magn. Mater. 322, 1569 (2010)

    ADS  Google Scholar 

  12. A. Chaturvedi, S. Stefanoski, M.H. Phan, G.S. Nolas, H. Srikanth, Appl. Phys. Lett. 99, 162513 (2011)

    ADS  Google Scholar 

  13. V. Provenzano, A.J. Shapiro, R.D. Shull, Nature 429, 853 (2004)

    ADS  Google Scholar 

  14. O. Tegus, E. Brück, K.H.J. Buschow, F.R. de Boer, Nature 415, 150 (2002)

    ADS  Google Scholar 

  15. V.K. Pecharsky, K.A. Gschneidner, Phys. Rev. Lett. 78, 4494 (1997)

    ADS  Google Scholar 

  16. N. Ben Amor, M. Bejar, E. Dhahri, M.A. Valente, J.L. Garden, E.K. Hlil, J. Alloys Compd. 563, 28 (2013)

    Google Scholar 

  17. T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Nat. Mater. 4, 450 (2005)

    ADS  Google Scholar 

  18. M. Khlifi, E. Dhahri, E.K. Hlil, Magn. J. Alloys Compd. 587, 771 (2014)

    Google Scholar 

  19. B.F. Yu, Q. Gao, B. Zhang, X.Z. Meng, Z. Chen, Int. J. Refrigeration 26, 622 (2003)

    Google Scholar 

  20. O. Tegus, E. Bruck, K.H.J. Buschow, F.R. de Boer, Nature 415, 150 (2002)

    ADS  Google Scholar 

  21. Y. Yi, L. Li, K. Su, Y. Qi, D. Huo, Intermetallics 80, 22 (2017)

    Google Scholar 

  22. Y. Yang, Y. Zhang, X. Xu, S. Geng, L. Hou, X. Li, Z. Ren, G. Wilde, J. Alloys Compd. 692, 665 (2017)

    Google Scholar 

  23. Y. Zhang, L. Hou, Z. Ren, X.G. Li, J. Alloys Compd. 656, 635 (2016)

    Google Scholar 

  24. M. Pękała, K. Pękała, V. Drozd, J.-F. Fagnard, P. Vanderbemden, J. Alloys Compd. 629, 98 (2015)

    Google Scholar 

  25. R.C. Bhatt, V.P.S. Awana, H. Kishan, P.C. Srivastava, J. Alloys Compd. 619, 151 (2015)

    Google Scholar 

  26. H.C. Tian, X.C. Zhong, Z.W. Liu, Z.G. Zheng, J.X. Min, Mater. Lett. 138, 64 (2015)

    Google Scholar 

  27. M.S. Anwar, F. Ahmed, R. Danish, B.H. Koo, Ceram. Int. 41, 631 (2015)

    Google Scholar 

  28. M. Krautz, A. Funk, K.P. Skokov, T. Gottschall, J. Eckert, O. Gutfleisch, A. Waske, Scr. Mater. 95, 50 (2015)

    Google Scholar 

  29. R. M'nassri, J. Supercond. Nov. Magn. 29, 207 (2016)

    Google Scholar 

  30. P. Gębara, P. Pawlik, J. Magn. Magn. Mater. 442, 145 (2017)

    ADS  Google Scholar 

  31. S.C. Paticopolous, R. Caballero-Flores, V. Franco, J.S. Blazquez, A. Conde, K.E. Knipling, M.A. Willard, Solid State Commun. 152, 1590 (2012)

    ADS  Google Scholar 

  32. G.F. Wanga, Z.R. Zhaob, H.L. Lib, X.F. Zhanga, Ceram. Int. 41, 9035 (2015)

    Google Scholar 

  33. H. Gharsallah, M. Bejar, E. Dhahri, E.K. Hlil, L. Bessais, Ceram. Int. 42, 697 (2016)

    Google Scholar 

  34. M.A. Hamad, Mater. Lett. 82, 181 (2012)

    Google Scholar 

  35. R. Tlili, R. Hammouda, M. Bejar, E. Dhahri, J. Magn. Magn. Mater. 386, 81 (2015)

    ADS  Google Scholar 

  36. M.A. Hamad, J. Supercond, Nov. Magn. 26, 2981 (2013)

    Google Scholar 

  37. Ah Dhahri, M. Jemmali, E. Dhahri, M.A. Valente, J. Alloys Comp. 638, 221 (2015)

    Google Scholar 

  38. M.A. Hamad, J. Therm. Anal. Calorim. 111, 1251 (2013)

    Google Scholar 

  39. R. Skini, M. Khlifi, M. Triki, E. Dhahri, E.K. Hlil, Chem. Phys. 452, 67 (2015)

    Google Scholar 

  40. E. Sagar, N.P. Kumar, J. Zhu, Y. Hu, P.V. Reddy, J. Supercond, Nov. Magn. 27, 2289 (2014)

    Google Scholar 

  41. N. Pavan Kumar, G. Lalitha, E. Sagar, P.V. Reddy, Phys. B 457, 275 (2015)

    ADS  Google Scholar 

  42. M.A. Hamad, J. Adv. Ceram. 2, 213 (2013)

    Google Scholar 

  43. K.A. Gschneidner Jr., V.K. Pecharsky, A.O. Tsokol, Rep. Prog. Phys. 68, 1479 (2005)

    ADS  Google Scholar 

  44. D. Fatnassi, K. Sbissi, E.K. Hlil, M. Ellouze, J.L. Rehspringer, F. Elhalouani, J. Nanostruct. Chem. 5, 375 (2015)

    Google Scholar 

  45. H. Gharsallah, A. Souissi, M. Bejar, E. Dhahri, E.K. Hlil, Mater. Chem. Phys. 182, 429 (2016)

    Google Scholar 

  46. H. Gharsallah, M. Bejar, E. Dhahri, E.K. Hlil, M. Sajieddine, J. Magn. Magn. Mater. 401, 56 (2016)

    ADS  Google Scholar 

  47. H. Yang, Y.H. Zhu, T. Xian, J.L. Jiang, J. Alloys Compd. 555, 150 (2013)

    Google Scholar 

  48. X.X. Zhang, G.H. Wen, F.W. Wang, W.H. Wang, C.H. Yu, G.H. Wu, Appl. Phys. Lett. 77, 3072 (2000)

    ADS  Google Scholar 

  49. W.Y. Tian, B.H. Yang, P.M. Xiang, Z. DeQian, W.W. Hua, Sci. China Ser. G Phys. Mech. Astron. 51, 337 (2008)

    ADS  Google Scholar 

  50. M. Nasri, M. Triki, E. Dhahri, M. Hussein, P. Lachkar, E.K. Hlil, Phys B 408, 104 (2013)

    ADS  Google Scholar 

  51. M.H. Phan, S.B. Tian, D.Q. Hoang, S.C. Yu, C. Nguyen, A.N. Ulyanov, J. Magn. Magn. Mater. 258, 309 (2003)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Tunisian National Ministry of Higher Education and Scientific Research and the Moroccan, Algerian and French Ministries of Higher Education and Research of PHC Morocco 15MAG07 collaboration, within the framework of Franco-Moroccan collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jeddi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharsallah, H., Jeddi, M., Bejar, M. et al. Prediction of magnetocaloric effect using a phenomenological model in (x) La0.6Ca0.4MnO3/(1 − x) La0.6Sr0.4MnO3 composites. Appl. Phys. A 125, 541 (2019). https://doi.org/10.1007/s00339-019-2851-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2851-y

Navigation