Skip to main content
Log in

Electrophysical Properties along the Interface of Two Polymer Films of Polymethylmethacrylate

  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electrical conductivity is studied along the interface between dielectric films of submicrometer thicknesses. The results of the comparative study of the electrophysical properties of the individual films are presented. A commercial polymer polymethylmetacrylate is used as the dielectric material. The studies have been performed by the two-probe scheme using the method of current–voltage characteristics. The conductivity is found to anomalously increase with respect to the bulk conductivity. The increase in the conductivity is established to be related to an increase in the charge carrier mobility along the interface to 140 cm2/V s. The results are compared with the data for known analogs; it is noted that additional study of the properties of a 3D region/2D region contact is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. K. Sengupta, T. Nagatsuma, and D. M. Mittleman, Nat. Electron. 1, 622 (2018).

    Article  Google Scholar 

  2. X. Wang, A. Suwardi, S. L. Lim, F. Wei, and J. Xu, Flexible Electron. 4, 1 (2020).

    Article  Google Scholar 

  3. W. K. Schubert, P. M. Baca, S. M. Dirk, G. R. Anderson, and D. R. Wheeler, Report No. No. SAND2006-6723 (Sandia Natl. Labor., 2006).

  4. J. Pereiroa, A. Petrovica, C. Panagopoulosa, and I. Božović, Phys. Express 1, 208 (2011).

    Google Scholar 

  5. V. L. Ginzburg, Phys. Lett. 13, 101 (1964).

    Article  ADS  Google Scholar 

  6. W. A. Harrison, E. A. Kraut, J. R. Waldrop, and R. W. Grant, Phys. Rev. B 18, 4402 (1978).

    Article  ADS  Google Scholar 

  7. A. Ohtomo and H. Y. Hwang, Nature (London, U.K.) 427, 423 (2004).

    Article  ADS  Google Scholar 

  8. S. Thiel, G. Hammerl, A. Schmehl, C. W. Schneider, and J. Mannhart, Science (Washington, DC, U.S.) 313, 1942 (2006).

    Article  ADS  Google Scholar 

  9. R. M. Gadiev, A. N. Lachinov, V. M. Kornilov, R. B. Salikhov, R. G. Rakhmeev, and A. R. Yusupov, Appl. Phys. Lett. 98, 173305 (2011).

    Article  ADS  Google Scholar 

  10. V. M. Kornilov, A. N. Lachinov, D. D. Karamov, I. R. Nabiullin, and Yu. V. Kul’velis, Phys. Solid State 58, 1065 (2016).

    Article  ADS  Google Scholar 

  11. A. I. Drachev, S. Z. Bumban, and I. V. Razumovskaya, Sov. Phys. Solid State 33, 739 (1991).

    Google Scholar 

  12. L. L. Burshtein and T. P. Stepanova, Vysokomol. Soedin. 8, 71 (1971).

    Google Scholar 

  13. N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Oxford, 1948).

    MATH  Google Scholar 

  14. A. A. Bunakov, A. N. Lachinov, and R. G. Salikhov, Tech. Phys. 48, 626 (2003).

    Article  Google Scholar 

  15. M. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).

    Google Scholar 

  16. R. M. Gadiev, A. N. Lachinov, V. M. Kornilov, R. B. Salikhov, R. G. Rakhmeev, and A. R. Yusupov, JETP Lett. 90, 726 (2009).

    Article  ADS  Google Scholar 

  17. H. Shirakawa, E. J. Louis, A. G. MacDiarmid, et al., J. Chem. Soc. Chem. Commun. I 16, 578 (1977).

    Article  Google Scholar 

  18. C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, et al., Phys. Rev. Lett. 39, 1098 (1977).

    Article  ADS  Google Scholar 

  19. Qin Wang, Jian-ling Li, Fei Gao, Wen-Sheng Li, Ke-Zhong Wu, and Xin-dong Wang, New Carbon Mater. 23, 275 (2008).

    Article  Google Scholar 

  20. R. M. Gadiev, A. N. Lachinov, A. F. Galiev, L. R. Kalimullina, and I. R. Nabiullin, JETP Lett. 100, 251 (2014).

    Article  ADS  Google Scholar 

  21. J. R. Kirtley and J. Mannhart, Nat. Mater. 7, 520 (2008).

    Article  ADS  Google Scholar 

  22. H. Alves, A. S. Molinari, H. Xie, and A. F. Morpurgo, Nat. Mater. 7, 574 (2008).

    Article  ADS  Google Scholar 

  23. N. Nakagawa, H. Y. Hwang, and D. A. Muller, Nat. Mater. 5, 204 (2006).

    Article  ADS  Google Scholar 

  24. V. A. Lomovskoi, Tonk. Khim. Tekhnol. 10 (3), 5 (2015).

    Google Scholar 

  25. S. G. Petrosyan and A. Ya. Shik, Sov. Phys. Semicond. 23, 696 (1989).

    Google Scholar 

Download references

Funding

The work was carried out with the support of the project “Mirror Laboratories” of National Research University “Higher School of Economics” and Bashkir State Pedagogical University named after M. Akmulla.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Lachinov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lachinov, A.N., Altynshina, G.R., Baibulova, G.S. et al. Electrophysical Properties along the Interface of Two Polymer Films of Polymethylmethacrylate. Phys. Solid State 63, 577–581 (2021). https://doi.org/10.1134/S1063783421040120

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783421040120

Keywords:

Navigation