Skip to main content
Log in

Boson Peak in Amorphous Graphene in the Stable Random Matrix Model

  • LATTICE DYNAMICS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The effect of disorder in the distribution of force constants on optical and acoustic phonons in the scalar model of crystalline graphene is studied for both oscillations lying in the sheet plane and for flexural modes. It was shown that in the model of stable random matrices with translational symmetry, an additional to Debye vibrational density of states arises at a sufficient degree of disorder, i.e., the boson peak. The boson peak shifts to lower frequencies with increasing relative fluctuations of force constants and decreasing Young’s modulus of the system. At a weak disorder (or with no disorder), there are two peaks in the density of states g(ω), which correspond to logarithmic van-Hove singularity for acoustic and optical phonons of crystalline graphene. These peaks broaden and merge into a single boson peak with increasing disorder. Optical phonons are first destroyed due to disorder, while acoustic phonons gradually transform to the boson peak. For flexural modes there is a slightly different situation. Van-Hove singularities still spread disorder, but lead to the appearance of phonons in the system, which form the boson peak and move with it to low frequencies with increasing disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. A. Kumar, M. Wilson, and M. F. Thorpe, J. Phys.: Condens. Matter 24, 485003 (2012).

    Google Scholar 

  2. R. Ravinder, R. Kumar, M. Agarwal, and N. M. Anoop Krishnan, Sci. Rep. 9, 4517 (2019).

    Article  ADS  Google Scholar 

  3. J. Kotakoski, A. V. Krasheninnikov, U. Kaiser, and J. C. Meyer, Phys. Rev. Lett. 106, 105505 (2011).

    Article  ADS  Google Scholar 

  4. S. Bazrafshan and A. Rajabpour, Int. J. Heat Mass Transfer 112, 379 (2017).

    Article  Google Scholar 

  5. C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science (Washington, DC, U. S.) 321, 385 (2008).

    Article  ADS  Google Scholar 

  6. J. S. Bunch, A. M. van der Zande, S. S. Verbridge, I. W. Frank, D. M. Tanenbaum, J. M. Parpia, H. G. Craighead, and P. L. McEuen, Science (Washington, DC, U. S.) 315, 490 (2007).

    Article  ADS  Google Scholar 

  7. A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).

    Article  ADS  Google Scholar 

  8. A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

    Article  ADS  Google Scholar 

  9. V. M. Apalkov and T. Chakraborty, Phys. Rev. B 84, 033408 (2011).

    Article  ADS  Google Scholar 

  10. A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, and D. N. Krasikov, Phys. Usp. 54, 227 (2011).

    Article  ADS  Google Scholar 

  11. A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).

    Article  ADS  Google Scholar 

  12. D. V. Tuan, A. Kumar, S. Roche, F. Ortmann, M. F. Thorpe, and P. Ordejon, Phys. Rev. B 86, 121408 (2012).

    Article  ADS  Google Scholar 

  13. C. Carpenter, D. Maroudas, and A. Ramasubramaniam, Appl. Phys. Lett. 103, 013102 (2013).

    Article  ADS  Google Scholar 

  14. A. Zandiatashbar, G.-H. Lee, S. J. An, S. Lee, N. Mathew, M. Terrones, T. Hayashi, C. R. Picu, J. Hone, and N. Koratkar, Nat. Commun. 5, 3186 (2014).

    Article  ADS  Google Scholar 

  15. G. Lupez-Polin, C. Gumez-Navarro, V. Parente, F. Guinea, M. I. Katsnelson, F. Perez-Murano, and J. Gumez-Herrero, Nat. Phys. 11, 26 (2015).

    Article  Google Scholar 

  16. T. Zhu and E. Ertekin, Phys. Rev. B 93, 155414 (2016).

    Article  ADS  Google Scholar 

  17. T. Zhu and E. Ertekin, Nano Lett. 16, 4763 (2016).

    Article  ADS  Google Scholar 

  18. P. B. Allen and J. L. Feldman, Phys. Rev. B 48, 12581 (1993).

    Article  ADS  Google Scholar 

  19. P. B. Allen, J. L. Feldman, J. Fabian, and F. Wooten, Philos. Mag., B 79, 1715 (1999).

    Article  ADS  Google Scholar 

  20. V. L. Gurevich, D. A. Parshin, and H. R. Schober, Phys. Rev. B 67, 4203 (2003).

    Google Scholar 

  21. D. A. Parshin, H. R. Schober, and V. L. Gurevich, Phys. Rev. B 76, 064206 (2007).

    Article  ADS  Google Scholar 

  22. W. Schirmacher, G. Diezemann, and C. Ganter, Phys. Rev. Lett. 81, 136 (1998).

    Article  ADS  Google Scholar 

  23. M. Baggioli and A. Zaccone, Phys. Rev. Lett. 122, 145501 (2019).

    Article  ADS  Google Scholar 

  24. T. Nakayama, Rep. Prog. Phys. 65, 1195 (2002).

    Article  ADS  Google Scholar 

  25. H. Shintani and H. Tanaka, Nat. Mater. 7, 870 (2008).

    Article  ADS  Google Scholar 

  26. S. N. Taraskin, Y. L. Loh, G. Natarajan, and S. R. Elliott, Phys. Rev. Lett. 86, 1255 (2001).

    Article  ADS  Google Scholar 

  27. A. I. Chumakov, G. Monaco, A. Monaco, W. A. Crichton, A. Bosak, R. Ruffer, A. Meyer, F. Kargl, L. Comez, D. Fioretto, H. Giefers, S. Roitsch, G. Wortmann, M. H. Manghnani, A. Hushur, et al., Phys. Rev. Lett. 106, 225501 (2011).

    Article  ADS  Google Scholar 

  28. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1982; Pergamon, New York, 1986).

  29. L. Wirtz and A. Rubio, Solid State Commun. 131, 141 (2004).

    Article  ADS  Google Scholar 

  30. J. C. Maxwell, Philos. Mag. 27, 294 (1865).

    Article  Google Scholar 

  31. Y. M. Beltukov, V. I. Kozub, and D. A. Parshin, Phys. Rev. B 87, 134203 (2013).

    Article  ADS  Google Scholar 

  32. Y. M. Beltukov and D. A. Parshin, JETP Lett. 104, 552 (2016).

    Article  ADS  Google Scholar 

  33. D. A. Konyukh, Ya. M. Bel’tyukov, and D. A. Parshin, Phys. Solid State 60, 376 (2018).

    Article  ADS  Google Scholar 

  34. L. A. Fal’kovskii, J. Exp. Theor. Phys. 115, 496 (2012).

    Article  ADS  Google Scholar 

  35. J. W. Kantelhardt, S. Russ, and A. Bunde, Phys. Rev. B 63, 064302 (2001).

    Article  ADS  Google Scholar 

  36. T. S. Grigera, V. Martin-Mayor, and G. Parisi, J. Phys.: Condens. Matter 14, 2167 (2002).

    ADS  Google Scholar 

  37. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov, Nature (London, U.K.) 438, 197 (2005).

    Article  ADS  Google Scholar 

  38. P. R. Wallace, Phys. Rev. 71, 622 (1947).

    Article  ADS  Google Scholar 

  39. J. P. Hobson and W. A. Nierenberg, Phys. Rev. 89, 662 (1953).

    Article  ADS  Google Scholar 

  40. A. Maradudin, E. Montroll, and J. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation (Academic, New York, 1963).

    Google Scholar 

  41. Y. M. Beltukov, C. Fusco, D. A. Parshin, and A. Tanguy, Phys. Rev. E 93, 023006 (2016).

    Article  ADS  Google Scholar 

  42. A. Weise, G. Wellein, A. Alvermann, and H. Fehske, Rev. Mod. Phys. 78, 275 (2006).

    Article  ADS  Google Scholar 

  43. Y. M. Beltukov and D. A. Parshin, JETP Lett. 93, 598 (2011).

    Article  ADS  Google Scholar 

  44. V. A. Marchenko and L. A. Pastur, Mat. Sb. 72, 507 (1967).

    MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are sincerely grateful to Y.M. Beltukov and   V.L. Gurevich for helpful critical remarks and L.E. Golub for the reference [34]. The authors are grateful to M.M. Glazov for interesting discussion on flexural modes. We are also particularly grateful to A.S. Ioselevich for detailed discussion of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Conyuh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Kazantsev

APPENDIX

APPENDIX

Let us consider separately coupled vibrations of “dark” and “light” graphene lattice atoms shown in Fig. 2, with amplitudes Vn, m and Un, m, respectively. Subscripts n and m number the atomic position along translation vectors а1 and a2. Let κ1 and κ2 be elastic coupling constants of the atom with neighbors from the first and second coordination circles containing three and six atoms, respectively.

Considering atomic masses to be identical, we write their equations of motion

$$m\frac{{{{d}^{2}}{{U}_{{n,m}}}}}{{d{{t}^{2}}}} = {{\kappa }_{1}}({{V}_{{n,m}}} + {{V}_{{n - 1,m}}} + {{V}_{{n,m - 1}}} - 3{{U}_{{n,m}}})$$
$$ + \;{{\kappa }_{2}}({{U}_{{n + 1,m}}} + {{U}_{{n - 1,m}}} + {{U}_{{n,m + 1}}}$$
$$\begin{gathered} + \;{{U}_{{n,m - 1}}} + {{U}_{{n - 1,m + 1}}} + {{U}_{{n + 1,m - 1}}} - 6{{U}_{{n,m}}}), \\ m\frac{{{{d}^{2}}{{V}_{{n,m}}}}}{{d{{t}^{2}}}} = {{\kappa }_{1}}({{U}_{{n,m}}} + {{U}_{{n + 1,m}}} + {{U}_{{n,m + 1}}} - 3{{V}_{{n,m}}}) \\ \end{gathered} $$
(22)
$$ + \;{{\kappa }_{2}}({{V}_{{n + 1,m}}} + {{V}_{{n - 1,m}}} + {{V}_{{n,m + 1}}}$$
$$ + \;{{V}_{{n,m - 1}}} + {{V}_{{n - 1,m + 1}}} + {{V}_{{n + 1,m - 1}}} - 6{{V}_{{n,m}}}).$$

Let us seek the solution of Eq. (22) in the form of plane traveling perturbation waves with frequency ω and wave vector q,

$$\begin{gathered} {{U}_{{n,m}}} = {{U}^{0}}{{e}^{{i{\mathbf{q}}(n{{{\mathbf{a}}}_{1}} + m{{{\mathbf{a}}}_{2}}) - i\omega t}}}, \\ {{V}_{{n,m}}} = {{V}^{0}}{{e}^{{i{\mathbf{q}}(n{{{\mathbf{a}}}_{1}} + m{{{\mathbf{a}}}_{2}}) - i\omega t}}}. \\ \end{gathered} $$
(23)

After substituting Eq. (23) into the equations of motion (22), we obtain

$$\begin{gathered} - m{{\omega }^{2}}{{U}_{{n,m}}} = {{\kappa }_{1}}({{V}_{{n,m}}}A( - {\mathbf{q}}) - 3{{U}_{{n,m}}}) \\ + \;2{{\kappa }_{2}}{{U}_{{n,m}}}(f({\mathbf{q}}) - 3), \\ - m{{\omega }^{2}}{{V}_{{n,m}}} = {{\kappa }_{1}}({{U}_{{n,m}}}A{\text{*}}( - {\mathbf{q}}) - 3{{V}_{{n,m}}}) \\ + \;2{{\kappa }_{2}}{{V}_{{n,m}}}(f({\mathbf{q}}) - 3), \\ \end{gathered} $$
(24)

where the functions

$$A({\mathbf{q}}) = (1 + {{e}^{{i{{{\mathbf{a}}}_{1}}{\mathbf{q}}}}} + {{e}^{{i{{{\mathbf{a}}}_{2}}{\mathbf{q}}}}}),$$
(25)
$$f({\mathbf{q}}) = \cos ({{{\mathbf{a}}}_{1}}{\mathbf{q}}) + \cos ({{{\mathbf{a}}}_{2}}{\mathbf{q}})\cos (({{{\mathbf{a}}}_{1}} - {{{\mathbf{a}}}_{2}}){\mathbf{q}})$$
(26)

are introduced.

Having introduced the notations \(\Omega _{{\,1}}^{2}\) = κ1/m and \(\Omega _{{\,2}}^{2}\) = κ2/m and conditionally admitting that \(\Omega _{{\,2}}^{2}\) can be negative, we rewrite system (24) in the form

$$\begin{gathered} {{U}_{{n,m}}}({{\omega }^{2}} - 3\Omega _{{\,1}}^{2} - 2\Omega _{{\,2}}^{2}(3 - f({\mathbf{q}})) + {{V}_{{n,m}}}\Omega _{{\,1}}^{2}A({\mathbf{q}}) = 0, \\ {{V}_{{n,m}}}({{\omega }^{2}} - 3\Omega _{{\,1}}^{2} - 2\Omega _{{\,2}}^{2}(3 - f({\mathbf{q}})) + {{U}_{{n,m}}}\Omega _{{\,1}}^{2}A{\text{*}}({\mathbf{q}}) = 0. \\ \end{gathered} $$
(27)

Equations (27) have a nontrivial solution provided the equal-zero determinant

$$({{\omega }^{2}} - 3\Omega _{{\,1}}^{2} - 2\Omega _{{\,2}}^{2}{{(3 - f({\mathbf{q}}))}^{2}} - \Omega _{{\,1}}^{4}A({\mathbf{q}})A{\text{*}}({\mathbf{q}}) = 0.$$
(28)

After transforming cofactors in the second term,

$$A({\mathbf{q}})A{\text{*}}({\mathbf{q}}) = 3 + 2f({\mathbf{q}}),$$
(29)

we obtain the formula for the dispersion relation of flexural modes in graphene taking into account two coordination circles,

$${{\omega }^{2}}({\mathbf{q}}) = \Omega _{{\,1}}^{2}(3 \pm \sqrt {3 + 2f({\mathbf{q}})} ) + 2\Omega _{{\,2}}^{2}(3 - f({\mathbf{q}})).$$
(30)

The “critical” relation of elastic constants κ1 and κ2 can be obtained from the condition of vanishing frequency (30) in the limit of small values aq \( \ll \) 1 for the acoustic branch. Optical branch frequencies are always nonzero; therefore, this condition does not matter for them. To a first approximation, the function f(q) is given by

$$f({\mathbf{q}}) \approx 3 - \frac{9}{4}{{a}^{2}}{{q}^{2}} + \frac{{27}}{{64}}{{a}^{4}}{{q}^{4}}.$$
(31)

In this case, the acoustic branch frequency is given by the relation

$$\omega \,({\mathbf{q}}) \approx \frac{3}{4}(\Omega _{{\,1}}^{2} + 6\Omega _{{\,2}}^{2}){{a}^{2}}{{q}^{2}} - \frac{3}{{64}}(\Omega _{{\,1}}^{2} + 18\Omega _{{\,2}}^{2}){{a}^{4}}{{q}^{4}}.$$
(32)

At the relation of elastic constants κ2 = –κ1/6, κ2 < 0, the term quadratic in q in Eq. (32) disappears, which yields the dispersion relation of flexural modes,

$$\omega ({\mathbf{q}}) \approx \frac{3}{4}(\Omega _{{\,1}}^{2} + 6\Omega _{{\,2}}^{2}){{a}^{2}}{{q}^{2}} - \frac{3}{{64}}(\Omega _{{\,1}}^{2} + 18\Omega _{{\,2}}^{2}){{a}^{4}}{{q}^{4}}.$$
(33)

It is easy to understand physically. At critical elastic coefficients, κ2 = –κ1/6, Young’s modulus of the graphene film for flexural modes is zero. Flexural modes phonons cannot propagate in such a soft medium, where their elastic modulus and speed of sound are zero. They are alternated by flexural modes waves with the other more complex dispersion relation. Near the critical state, this can phenomenologically be written as

$${{\omega }^{2}}({\mathbf{q}}) = a{{q}^{2}} + \beta {{q}^{4}},$$
(34)

where α ∝ κ2 + κ1/6, and β ~ 1. At the flexural modes transition point, α = 0. From this it follows that these vibrations are phonons with a linear dispersion relation at low frequencies ω < \(\sqrt \alpha \), and the speed of sound \({v}\)\(\sqrt \alpha \) vanishes at the critical point. At higher frequencies, these are flexural modes waves with quadratic dispersion relation. It should be noted that the disappearance of the term quadratic in q in the dispersion relation (32) is possible only when considering farther negative bonds.

In the case of the interaction only with neighbors from the first coordination circle (which is equivalent to the condition κ2 = 0), Eq. (30) is reduced to the relation

$$\omega _{1}^{2}({\mathbf{q}}) = \Omega _{{\,1}}^{2}(3 \pm \sqrt {3 + 2f({\mathbf{q}})} ).$$
(35)

Let us show that the dispersion relation of flexural modes ωf (q) corresponds to ω2(q). To this end, we transform Eq. (30) taking into account the “critical” relation of elastic constants κ2 = –κ1/6 as follows

$$\begin{gathered} \omega _{f}^{2}({\mathbf{q}}) = \Omega _{{\,1}}^{2}\left( {2 \pm \sqrt {3 + 2f({\mathbf{q}})} + \frac{{f({\mathbf{q}})}}{3}} \right) \\ = \frac{{\Omega _{{\,1}}^{2}}}{6}{{(3 \pm \sqrt {3 + 2f({\mathbf{q}})} )}^{2}} = \frac{1}{{6\Omega _{{\,1}}^{2}}}\omega _{1}^{4}({\mathbf{q}}). \\ \end{gathered} $$
(36)

In other words, the dispersion relation of flexural modes (36) can be defined as the squared phonon dispersion relation (35) taking into account the first coordination circle. In turn, this substantiates our choice of the dynamic matrix of flexural modes \({{\hat {C}}_{f}}\), defined as the squared dynamic matrix of planar vibrations \({{\hat {C}}_{p}}\).

Thus, the involvement of the interaction with atoms from the second coordination circle drastically changes the dispersion relation of graphene vibrational modes and, in the case of the “critical” relation of elastic constants, results in the quadratic dependence instead of the linear dispersion relation following from their interaction with atoms of the first coordination circle. We cannot answer the question what is the actual dispersion relation of flexural modes in graphene. It depends on the relation of elastic constants κ1 and κ2 which should be determined either experimentally or from a deeper theory. For example, if the consideration is based on experiments, the experimental points in Fig. 3 suggest that we are either in a critical situation or very close to it. This is clear from the parabolic appearance of the dispersion relation (it is obvious that more comprehensive processing of experimental data is required). We come to the same conclusion after an analysis of the theoretical data shown in Fig. 5. There is also clearly seen the nonlinear dependence ω(q) at the point Γ for ZA-type flexural modes. However, the authors of this study admit that they obtained a quadratic dependence by nulling the speed of sound. Flexural modes behave similarly in the present study. At the critical point, Young’s modulus and the speed of sound vanish in the present study as well. It is clear that a more comprehensive study of this problem is required to prove the existences of negative springs in graphene and the dispersion relation q2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raikov, I.O., Conyuh, D.A., Ipatov, A.N. et al. Boson Peak in Amorphous Graphene in the Stable Random Matrix Model. Phys. Solid State 62, 2143–2153 (2020). https://doi.org/10.1134/S1063783420110232

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420110232

Keywords:

Navigation