Skip to main content
Log in

Coherent states for dispersive pseudo-Landau-levels in strained honeycomb lattices

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Dirac fermions in graphene may experiment dispersive pseudo-Landau levels due to a homogeneous pseudomagnetic field and a position-dependent Fermi velocity induced by strain. In this paper, we study the (semi-classical) dynamics of these particles under such a physical context from an approach of coherent states. For this purpose we use a Landau-like gauge to built Perelomov coherent states by the action of a non-unitary displacement operator \(D(\alpha )\) on the fundamental state of the system. We analyze the time evolution of the probability density and the generalized uncertainty principle as well as the Wigner function for the coherent states. Our results show how x-momentum dependency affects the motion periodicity and the Wigner function shape in phase space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E. Schrödinger, Der stetige Übergang von der Mikro-zur Makromechanik. Naturwissenschaften 14(28), 664–666 (1926)

    Article  ADS  MATH  Google Scholar 

  2. R.J. Glauber, Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. J. Klauder, B. Skagerstam, Coherent States: Applications in Physics and Mathematical Physics (World Scientific, Singapore, 1985)

    Book  MATH  Google Scholar 

  4. V.I. Man’ko, G. Marmo, E.C.G. Sudarshan, F. Zaccaria, f-Oscillators and nonlinear coherent states. Phys. Scr. 55, 528–541 (1997)

    Article  ADS  Google Scholar 

  5. J.P. Gazeau, J.R. Klauder, Coherent states for systems with discrete and continuous spectrum. J. Phys. A Math. Gen. 32, 123–132 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. J.P. Gazeau, Coherent States in Quantum Physics (Wiley, Berlin, 2009)

    Book  Google Scholar 

  7. J. Récamier, M. Gorayeb, W.L. Mochán, J.L. Paz, Nonlinear coherent states and some of their properties. Int. J. Theor. Phys. 47(3), 673–683 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. M.M. Nieto, L.M. Simmons, Coherent states for general potentials. Phys. Rev. Lett. 41, 207–210 (1978)

    Article  ADS  Google Scholar 

  9. M.M. Nieto, L.M. Simmons, Coherent states for general potentials. I. Formalism. Phys. Rev. D 20, 1321–1331 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  10. R.J. Glauber, The quantum theory of optical coherence. Phys. Rev. 130, 2529–2539 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  11. A.O. Barut, L. Girardello, New “coherent” states associated with non-compact groups. Commun. Math. Phys. 21(1), 41–55 (1971)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. J.R. Klauder, Continuous-representation theory. II. Generalized relation between quantum and classical dynamics. J. Math. Phys. 4(8), 1058–1073 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. A.M. Perelomov, Coherent states for arbitrary Lie group. Commun. Math. Phys. 26(3), 222–236 (1972)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. R. Gilmore, R. Hermann, Lie groups, Lie algebras, and some of their applications. Phys. Today 27(11), 54 (1974)

    Article  Google Scholar 

  15. P.W. Anderson, Coherent excited states in the theory of superconductivity: gauge invariance and the Meissner effect. Phys. Rev. 110, 827–835 (1958)

    Article  ADS  MathSciNet  Google Scholar 

  16. H. Hong-Bin, SU(2) and Glauber coherent states of Cooper pairs in superconductor—studies of the quantum characters of Cooper pairs and Josephson superconductivity. Acta Phys. Sin. 40(9), 1402–1410 (1991)

    Article  Google Scholar 

  17. L. Shchurova, Various coherent electron states in quasi-two-dimensional superconductors. Phys. C Supercond. 408–410, 363–364 (2004)

    Article  ADS  Google Scholar 

  18. V. Fock, Bemerkung zur Quantelung des harmonischen Oszillators im Magnetfeld. Z. Phys. 47, 446–448 (1928)

    Article  ADS  MATH  Google Scholar 

  19. L. Landau, Diamagnetismus der Metalle. Z. Phys. 64, 629–637 (1930)

    Article  ADS  MATH  Google Scholar 

  20. A. Feldman, A.H. Kahn, Landau diamagnetism from the coherent states of an electron in a uniform magnetic field. Phys. Rev. B 1, 4584–4589 (1970)

    Article  ADS  Google Scholar 

  21. V.V. Dodonov, Coherent states and their generalizations for a charged particle in a magnetic field, in Coherent States and Their Applications, ed. by J.-P. Antoine, F. Bagarello, J.-P. Gazeau (Springer, Cham, 2018), pp. 311–338

    Chapter  MATH  Google Scholar 

  22. E. Díaz-Bautista, D.J. Fernández, Graphene coherent states. Eur. Phys. J. Plus 132(11), 499 (2017)

    Article  MATH  Google Scholar 

  23. E. Díaz-Bautista, J. Negro, L.M. Nieto, Partial coherent states in graphene. J. Phys. Conf. Ser. 1194, 012025 (2019)

    Article  Google Scholar 

  24. M. Castillo-Celeita, E. Díaz-Bautista, M. Oliva-Leyva, Coherent states for graphene under the interaction of crossed electric and magnetic fields. Ann. Phys. 421, 168287 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. D.J. Fernández, D.I. Martínez-Moreno, Bilayer graphene coherent states. Eur. Phys. J. Plus 135(9), 739 (2020)

    Article  Google Scholar 

  26. G.G. Naumis, S. Barraza-Lopez, M. Oliva-Leyva, H. Terrones, Electronic and optical properties of strained graphene and other strained 2D materials: a review. Rep. Prog. Phys. 80, 096501 (2017)

    Article  ADS  Google Scholar 

  27. Z. Peng, X. Chen, Y. Fan, D.J. Srolovitz, D. Lei, Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light Sci. Appl. 9, 190 (2020)

    Article  ADS  Google Scholar 

  28. M. Oliva-Leyva, C. Wang, Low-energy theory for strained graphene: an approach up to second-order in the strain tensor. J. Phys. Condens. Matter 29, 165301 (2017)

    Article  ADS  Google Scholar 

  29. F.M.D. Pellegrino, G.G.N. Angilella, R. Pucci, Strain effect on the optical conductivity of graphene. Phys. Rev. B 81, 035411 (2010)

    Article  ADS  Google Scholar 

  30. G.-X. Ni, H.-Z. Yang, W. Ji, S.-J. Baeck, C.-T. Toh, J.-H. Ahn, V.M. Pereira, B. Öyilmaz, Tuning optical conductivity of large-scale CVD graphene by strain engineering. Adv. Mater. 26(7), 1081–1086 (2014)

    Article  Google Scholar 

  31. M. Oliva-Leyva, C. Wang, Magneto-optical conductivity of anisotropic two-dimensional Dirac–Weyl materials. Ann. Phys. 384, 61–70 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. E. Díaz-Bautista, Y. Concha-Sánchez, A. Raya, Barut–Girardello coherent states for anisotropic 2D-Dirac materials. J. Phys. Condens. Matter 31(43), 435702 (2019)

    Article  ADS  Google Scholar 

  33. E. Díaz-Bautista, Y. Betancur-Ocampo, Phase-space representation of Landau and electron coherent states for uniaxially strained graphene. Phys. Rev. B 101, 125402 (2020)

    Article  ADS  Google Scholar 

  34. E. Díaz-Bautista, M. Oliva-Leyva, Y. Concha-Sánchez, A. Raya, Coherent states in magnetized anisotropic 2D Dirac materials. J. Phys. A Math. Theor. 53, 105301 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. E. Díaz-Bautista, Schrödinger-type 2D coherent states of magnetized uniaxially strained graphene. J. Math. Phys. 61(10), 102101 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. A. Anbaraki, A. Motamedinasab, Non-classical properties of coherent states in magnetized anisotropic 2D Dirac materials. Optik 228, 166140 (2021)

    Article  ADS  Google Scholar 

  37. V.J. Kauppila, F. Aikebaier, T.T. Heikkilä, Flat-band superconductivity in strained Dirac materials. Phys. Rev. B 93, 214505 (2016)

    Article  ADS  Google Scholar 

  38. J. Mao, S.P. Milovanović, M. Andelković, X. Lai, Y. Cao, K. Watanabe, T. Taniguchi, L. Covaci, F.M. Peeters, A.K. Geim, Y. Jiang, E.Y. Andrei, Evidence of flat bands and correlated states in buckled graphene superlattices. Nature 584, 215–220 (2020)

    Article  ADS  Google Scholar 

  39. E. Sela, Y. Bloch, F. von Oppen, M.B. Shalom, Quantum Hall response to time-dependent strain gradients in graphene. Phys. Rev. Lett. 124, 026602 (2020)

    Article  ADS  Google Scholar 

  40. G. Wagner, F. de Juan, D.X. Nguyen, Quantum Hall effect in curved space realized in strained graphene. arXiv preprint arXiv:1911.02028 (2020)

  41. M. Settnes, S.R. Power, M. Brandbyge, A.-P. Jauho, Graphene nanobubbles as valley filters and beam splitters. Phys. Rev. Lett. 117, 276801 (2016)

    Article  ADS  Google Scholar 

  42. T. Stegmann, N. Szpak, Current splitting and valley polarization in elastically deformed graphene. 2D Mater. 6, 015024 (2018)

    Article  Google Scholar 

  43. S.-Y. Li, Y. Su, Y.-N. Ren, L. He, Valley polarization and inversion in strained graphene via pseudo-Landau levels, valley splitting of real Landau levels, and confined states. Phys. Rev. Lett. 124, 106802 (2020)

    Article  ADS  Google Scholar 

  44. E. Lantagne-Hurtubise, X.-X. Zhang, M. Franz, Dispersive Landau levels and valley currents in strained graphene nanoribbons. Phys. Rev. B 101, 085423 (2020)

    Article  ADS  Google Scholar 

  45. M. Oliva-Leyva, J.E. Barrios-Vargas, G.G. de la Cruz, Effective magnetic field induced by inhomogeneous Fermi velocity in strained honeycomb structures. Phys. Rev. B 102, 035447 (2020)

    Article  ADS  Google Scholar 

  46. F. de Juan, M. Sturla, M.A.H. Vozmediano, Space dependent Fermi velocity in strained graphene. Phys. Rev. Lett. 108, 227205 (2012)

    Article  ADS  Google Scholar 

  47. M. Oliva-Leyva, G.G. Naumis, Generalizing the Fermi velocity of strained graphene from uniform to nonuniform strain. Phys. Lett. A 379, 2645 (2015)

    Article  ADS  MATH  Google Scholar 

  48. S.H. Simon, The Oxford Solid State Basics (Oxford University Press, Oxford, 2013)

    MATH  Google Scholar 

  49. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, 1st edn. (Wiley, New York, 1977)

    MATH  Google Scholar 

  50. H. Groenewold, On the principles of elementary quantum mechanics. Physica 12(7), 405–460 (1946)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. J.E. Moyal, Quantum mechanics as a statistical theory. Math. Proc. Camb. Philos. Soc. 45(1), 99–124 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. H. Weyl, Quantenmechanik und Gruppentheorie. Z. Phys. 46(1–2), 1–46 (1927)

    Article  ADS  MATH  Google Scholar 

  53. E. Wigner, On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    Article  ADS  MATH  Google Scholar 

  54. C.K. Zachos, D.B. Fairlie, T.L. Curtright, Quantum Mechanics in Phase Space (World Scientific, Singapore, 2005)

    Book  MATH  Google Scholar 

  55. T.L. Curtright, C.K. Zachos, Quantum mechanics in phase space. Asia Pac. Phys. Newslett. 01(01), 37–46 (2012)

    Article  Google Scholar 

  56. K.E. Cahill, R.J. Glauber, Density operators and quasiprobability distributions. Phys. Rev. 177, 1882 (1969)

    Article  ADS  Google Scholar 

  57. M.V. Berry, Semi-classical mechanics in phase space: a study of Wigner’s function. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 287(1343), 237 (1977)

    ADS  MathSciNet  MATH  Google Scholar 

  58. F. Bayen, M. Flato, C. Fronsdal, A. Lichnerowicz, D. Sternheimer, Deformation theory and quantization. I. Deformations of symplectic structures. Ann. Phys. 111(1), 61 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. G.J. Iafrate, H.L. Grubin, D.K. Ferry, The Wigner distribution function. Phys. Lett. A 87(4), 145 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  60. K. Takahashi, Wigner and Husimi functions in quantum mechanics. J. Phys. Soc. Jpn. 55(3), 762 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  61. C. Gerry, P.L. Knight, Introductory Quantum Optics (Cambridge University Press, Cambridge, 2005)

    Google Scholar 

  62. A. Marguerite, E. Bocquillon, J.-M. Berroir, B. Plaçais, A. Cavanna, Y. Jin, P. Degiovanni, G. Fève, Two-particle interferometry in quantum Hall edge channels. Phys. Status Solidi B 254(3), 1600618 (2017)

    Article  ADS  Google Scholar 

  63. D. Leiner, R. Zeier, S.J. Glaser, Wigner tomography of multispin quantum states. Phys. Rev. A 96, 063413 (2017)

    Article  ADS  Google Scholar 

  64. E. Knyazev, K.Y. Spasibko, M.V. Chekhova, F.Y. Khalili, Quantum tomography enhanced through parametric amplification. New J. Phys. 20(1), 013005 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  65. T. Jullien, P. Roulleau, B. Roche, A. Cavanna, Y. Jin, D.C. Glattli, Quantum tomography of an electron. Nature 514, 603 (2014)

    Article  ADS  Google Scholar 

  66. X. Gu, A.F. Kockum, A. Miranowicz, Y.-X. Liu, F. Nori, Microwave photonics with superconducting quantum circuits. Phys. Rep. 718, 1 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. C. Jacoboni, P. Bordone, The Wigner function approach to non-equilibrium electron transport. Rep. Prog. Phys. 67(7), 1033 (2004)

    Article  ADS  Google Scholar 

  68. O. Morandi, F. Schürrer, Wigner model for quantum transport in graphene. J. Phys. A Math. Theor. 44(26), 265301 (2011)

    Article  ADS  MATH  Google Scholar 

  69. D.J. Mason, M.F. Borunda, E.J. Heller, Semiclassical deconstruction of quantum states in graphene. Phys. Rev. B 88, 165421 (2013)

    Article  ADS  Google Scholar 

  70. G.J. Iafrate, V.N. Sokolov, J.B. Krieger, Quantum transport and the Wigner distribution function for Bloch electrons in spatially homogeneous electric and magnetic fields. Phys. Rev. B 96, 144303 (2017)

    Article  ADS  Google Scholar 

  71. D.K. Ferry, I. Welland, Relativistic Wigner functions in transition metal dichalcogenides. J. Comput. Electron. 17(1), 110 (2018)

    Article  Google Scholar 

  72. A. Kenfack, K. Zyczkowski, Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B Quantum Semiclass. Opt. 6(10), 396 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  73. K. Wódkiewicz, Operational approach to phase-space measurements in quantum mechanics. Phys. Rev. Lett. 52, 1064 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  74. A. Royer, Measurement of the Wigner function. Phys. Rev. Lett. 55, 2745 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  75. D.T. Smithey, M. Beck, M.G. Raymer, A. Faridani, Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244 (1993)

    Article  ADS  Google Scholar 

  76. G. Breitenbach, S. Schiller, J. Mlynek, Measurement of the quantum states of squeezed light. Nature 387, 471 (1997)

    Article  ADS  Google Scholar 

  77. A. Jellal, A.E. Mouhafid, M. Daoud, Massless Dirac fermions in an electromagnetic field. J. Stat. Mech. Theory Exp. 2012(01), P01021 (2012)

    Article  Google Scholar 

  78. T.M. Rusin, W. Zawadzki, Zitterbewegung of electrons in graphene in a magnetic field. Phys. Rev. B 78, 125419 (2008)

    Article  ADS  Google Scholar 

  79. B. Dóra, K. Ziegler, P. Thalmeier, M. Nakamura, Rabi oscillations in Landau-quantized graphene. Phys. Rev. Lett. 102, 036803 (2009)

    Article  ADS  Google Scholar 

  80. N. Goldman, A. Kubasiak, A. Bermudez, P. Gaspard, M. Lewenstein, M.A. Martin-Delgado, Non-abelian optical lattices: anomalous quantum Hall effect and Dirac fermions. Phys. Rev. Lett. 103, 035301 (2009)

    Article  ADS  Google Scholar 

  81. J. Schliemann, Cyclotron motion in graphene. New J. Phys. 10(4), 043024 (2008)

    Article  ADS  Google Scholar 

  82. B.I. Lev, A.A. Semenov, C.V. Usenko, Scalar charged particle in Weyl–Wigner–Moyal phase space. Constant magnetic field. J. Russ. Laser Res. 23(4), 347–368 (2002)

    Article  Google Scholar 

  83. P. Ghosh, P. Roy, Quasi coherent state of the Dirac oscillator. J. Mod. Opt. 68(1), 56–62 (2021)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by Consejo Nacional de Ciencia y Tecnología (Mexico), project FORDECYT-PRONACES/61533/2020 and Secretaría de Investigación y Posgrado (Instituto Politécnico Nacional) Grant 20210317.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erik Díaz-Bautista.

Appendices

Orthogonality and completeness relation

The PCSs satisfy the following relation

$$\begin{aligned} \vert \langle \varPsi _{z'}\vert \varPsi _{z}\rangle \vert =\left| \frac{\exp (z'^{*}z)+1}{\sqrt{(\exp (\vert z\vert ^{2})+1)(\exp (\vert z'\vert ^{2})+1)}}\right| \ne \delta (z'-z). \end{aligned}$$
(A.1)

This implies that these states are not orthogonal for \(z\ne z'\), so we can say that the set of states \(\varPsi _{\alpha }\) is overcomplete.

On the other hand, it is worth to remark that the PCS do not satisfy a completeness relation in the usual sense, since the superposition considers positive energy states only [83]. In order to clarify this, let us consider the following expression:

$$\begin{aligned} \int _{\mathbb {C}}\vert \varPsi _{z}\rangle \langle \varPsi _{z}\vert \frac{\mathrm{d}\mu (z)}{\pi }+\frac{1}{2}\sum _{n=1}^{\infty }\vert \varPsi _{n}\rangle \langle \varPsi _{n}\vert , \end{aligned}$$
(A.2)

where \(\mathrm {d}\mu (z)\) is the measure defined in the complex plane as

$$\begin{aligned} \mathrm{d}\mu (z)=\frac{\vert z\vert \left( \exp \left( \vert z\vert ^{2}\right) +1\right) }{2\exp \left( \vert z\vert ^{2}\right) }\mathrm{d}\vert z\vert \,\mathrm{d}\theta . \end{aligned}$$
(A.3)

Now, by defining the variable \(r=\vert z\vert \), Eq. (A.2) can be rewritten as:

$$\begin{aligned}&\int _{0}^{\infty }\int _{0}^{2\pi }\frac{e^{-r^{2}}r}{4\pi }\left[ \vert \varPsi _{0}\rangle \langle \varPsi _{0}\vert +\sum _{m=0}^{\infty }\frac{r^{m}e^{-im\theta }}{\sqrt{m!}}\vert \varPsi _{0}\rangle \langle \varPsi _{m}\vert +\sum _{n=0}^{\infty }\frac{r^{n}e^{in\theta }}{\sqrt{n!}}\vert \varPsi _{n}\rangle \langle \varPsi _{0}\vert \right. \nonumber \\&\quad \left. +\sum _{n,m=0}^{\infty }\frac{r^{n+m}e^{i(n-m)\theta }}{\sqrt{n!\,m!}}\vert \varPsi _{n}\rangle \langle \varPsi _{m}\vert \right] \mathrm{d}\theta \mathrm{d}r+\frac{1}{2}\sum _{n=1}^{\infty }\vert \varPsi _{n}\rangle \langle \varPsi _{n}\vert , \end{aligned}$$
(A.4)

which, after applying the results

$$\begin{aligned} \int _{0}^{2\pi }\exp \left( i(n-m)\theta \right) \mathrm {d}\theta =2\pi \delta _{mn}, \quad \int _{0}^{\infty }2r^{2n+1}\exp \left( -r^{2}\right) \mathrm {d}r=\varGamma (n+1)=n!,\nonumber \\ \end{aligned}$$
(A.5)

yields to

$$\begin{aligned} \sum _{n=0}^{\infty }\vert \varPsi _{n}\rangle \langle \varPsi _{n}\vert \equiv \mathbb {I}, \end{aligned}$$
(A.6)

where \(\mathbb {I}\) denotes the identity operator in the Hilbert space \(\mathcal {H}\) of Landau levels in the conduction band (\(\lambda =+\)).

Occupation number distribution

On the other hand, the probability of a PCS of being in an eigenstate \(\varPsi _{n}\) is given by

$$\begin{aligned} P_{\alpha }(n)=\vert \langle \varPsi _{n}\vert \varPsi _{\alpha }\rangle \vert ^{2}=\left( \frac{2}{\exp \left( 2\mu \right) +1}\right) \times {\left\{ \begin{array}{ll} 1, &{}\quad n=0, \\ \frac{(2\mu )^{n}}{2n!}, &{}\quad n>0, \end{array}\right. } \end{aligned}$$
(B.1)

where \(\mu =\vert \alpha \vert ^{2}\).

This occupation number distribution is compared with that of the CSs of the harmonic oscillator with eigenvalue \(z_\mathrm{CS}\in \mathbb {C}\) in Fig. 12. For the harmonic oscillator case, \(P_{z}(n)\) is a Poisson distribution, namely, \(P_{z}(n)=\exp (-\tau )\tau ^{n}/n!\) with mean \(\tau =\vert z_\mathrm{CS}\vert ^{2}\). In our case, as \(\mu \) increases, we have that \(P_{\alpha }(n)\sim P_{z}(n)\) with \(\tau =2\mu \).

Fig. 12
figure 12

Occupation number distribution \(P_{\alpha }(n)\) in Eq. (B.1) for the coherent states \(\varPsi _{\alpha }\) for different values of \(\mu =\vert \alpha \vert ^{2}\). \(P_{\alpha }(n)\) adjusts to Poisson distribution (solid curves) as \(\mu \) grows

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Díaz-Bautista, E., Oliva-Leyva, M. Coherent states for dispersive pseudo-Landau-levels in strained honeycomb lattices. Eur. Phys. J. Plus 136, 765 (2021). https://doi.org/10.1140/epjp/s13360-021-01753-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-021-01753-w

Navigation