Skip to main content
Log in

Nanowires Made of FeNi and FeCo Alloys: Synthesis, Structure, and Mössbauer Measurements

  • MAGNETISM
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Nanowires have been formed from FeNi and FeCo alloys by the template synthesis method based on galvanic filling of pores of track membranes. A change in the nanowire elemental composition with a change in the electrolyte composition and with a change in the deposition potential has been studied. FeNi nanowires exhibit the effect of anomalous Fe codeposition: the iron content in the nanowires is much higher than that in the electrolyte. The difference increases with an increase in the initial concentration and with a decrease in the growth potential. It has also been found that the iron concentration increases in nanowire vertices. For FeCo nanowires, their composition corresponds to the electrolyte composition and changes only slightly with a change in the potential. An analysis of the X-ray diffraction data has determined the character of change in the spectra under varying growth conditions. The X-ray spectra of FeNi are found to depend on the growth potential (the intensity of phase peaks changes). Mössbauer measurements have revealed spontaneous magnetization for all samples of arrays of nanowires along their axes. The dependence of hyperfine magnetic field strength Bhf at 57Fe nuclei on the composition of nanowires of FexCo1 – x and FexNi1 – x solid solutions is obtained for the first time. It is found that the Bhf  value decreases with an increase in the electrodeposition rate (or with an increase in deposition potential U).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. E. Possin, Rev. Sci. Instrum. 41, 772 (1970).

    Article  ADS  Google Scholar 

  2. S. Kawai and R. J. Ueda, Electrochem. Soc. 112, 32 (1975).

    Google Scholar 

  3. S. K. Chakarvarti and J. Vetter, Nucl. Instrum. Methods Phys. Res. 62, 109 (1991).

    Article  ADS  Google Scholar 

  4. J. Vetter and R. Spohr, Nucl. Instrum. Methods Phys. Res. 79, 691 (1993).

    Article  ADS  Google Scholar 

  5. T. M. Whitney, J. S. Jiang, P. S. Searson, and C. L. Chien, Science (Washington, DC, U. S.) 261, 1316 (1993).

    Article  ADS  Google Scholar 

  6. C. R. Martin, Science (Washington, DC, U. S.) 266, 1961 (1994).

    Article  ADS  Google Scholar 

  7. H. Masuda and K. Fukuda, Science (Washington, DC, U. S.) 268, 1466 (1995).

    Article  ADS  Google Scholar 

  8. N. Lupu, Electrodeposited Nanowires and Their Applications (InTech, Croatia, 2010).

    Book  Google Scholar 

  9. Magnetic Nano- and Microwires: Design, Synthesis, Properties and Applications, Ed. by M. Vázquez (Woodhead, Elsevier, Amsterdam, 2015).

  10. A. A. Davydov and V. M. Volgin, Russ. J. Electrochem. 52, 806 (2016).

    Article  Google Scholar 

  11. D. J. Sellmyer, M. Zheng, and R. Skomski, J. Phys.: Condens. Matter 13, R433 (2001).

    ADS  Google Scholar 

  12. Y. P. Ivanov, J. Leliaert, A. Crespo, M. Pancaldi, C. Tollan, J. Kosel, A. Chuvilin, and P. Vavassori, ACS Appl. Mater. Interfaces 11, 4 (2019).

    Article  Google Scholar 

  13. M. Vazquez, K. Pirota, J. Torrejon, D. Navas, and M. Hernandez-Velez, J. Magn. Mater. 294, 174 (2005).

    Article  ADS  Google Scholar 

  14. J. Alonso, H. Khurshid, V. Sankar, Z. Nemati, M. H. Phan, E. Garayo, J. A. Garcia, and H. Srikanth, J. Appl. Phys. 117, 17D113 (2015).

  15. L. Elbaile, R. D. Crespo, V. Vega, and J. A. Garcıa, J. Nanomater. 13, 198453 (2012).

    Google Scholar 

  16. D. C. Leitao, C. T. Sousa, J. Ventura, J. S. Amaral, F. Carpinteiro, K. R. Pirota, M. Vazquez, J. B. Sousa, and J. P. Araujo, J. Non-Cryst. Solids 354, 5241 (2008).

    Article  ADS  Google Scholar 

  17. M. Almasi Kashi, A. Ramazani, S. Doudafkan, and A. S. Esmaeily, Appl. Phys. A 102, 761 (2011).

    Article  ADS  Google Scholar 

  18. K. V. Frolov, D. L. Zagorskii, I. S. Lyubutin, M. A. Chuev, I. V. Perunov, S. A. Bedin, A. A. Lomov, V. V. Artemov, and S. N. Sul’yanov, JETP Lett. 105, 319 (2017).

    Article  ADS  Google Scholar 

  19. D. L. Zagorskii, K. V. Frolov, S. A. Bedin, I. V. Perunov, M. A. Chuev, A. A. Lomov, and I. M. Doludenko, Phys. Solid State 60, 2115 (2018).

    Article  ADS  Google Scholar 

  20. K. V. Frolov, M. A. Chuev, I. S. Lyubutin, D. L. Zagorskii, S. A. Bedin, I. V. Perunov, A. A. Lomov, V. V. Artemov, D. N. Khmelenin, S. N. Sulyanova, and I. M. Doludenko, J. Magn. Magn. Mater. 489, 165415 (2019).

    Article  Google Scholar 

  21. A. M. Afanas’ev and M. A. Chuev, J. Exp. Theor. Phys. 80, 560 (1995).

    ADS  Google Scholar 

  22. M. A. Chuev, Dokl. Phys. 56, 318 (2011).

    Article  ADS  Google Scholar 

  23. C. Johnson, M. S. Ridout, and T. E. Cranshaw, Proc. Phys. Soc. 81, 1079 (1963).

    Article  ADS  Google Scholar 

  24. A. M. Afanas’ev, M. A. Chuev, and J. Hesse, J. Exp. Theor. Phys. 89, 533 (1999).

    Article  ADS  Google Scholar 

  25. M. Chuev and J. Hesse, J. Phys.: Condens. Matter 9, 506201 (2007).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to P.Yu. Apel’ (Joint Institute for Nuclear Research, Dubna) for supplying samples of polymer matrices.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within State assignments for the Federal Scientific Research Centre “Crystallography and Photonics” and Valiev Institute of Physics and Technology of the Russian Academy of Sciences and by the Russian Foundation for Basic Research (project no. 18-32-01066) in the part concerning synthesis of nanowires and Mössbauer measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Zagorskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doludenko, I.M., Zagorskii, D.L., Frolov, K.V. et al. Nanowires Made of FeNi and FeCo Alloys: Synthesis, Structure, and Mössbauer Measurements. Phys. Solid State 62, 1639–1646 (2020). https://doi.org/10.1134/S1063783420090061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420090061

Keywords:

Navigation