Skip to main content
Log in

Morphology and the Thermoelectric Properties of γ-GdxDy1 – xS1.5 – y Solid Solution Ceramics

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The temperature dependences of the Seebeck coefficient, the electrical conductivity (T = 300–873 K) and also the heat conductivity coefficient, and the thermoelectric figure of merit (T = 300–770 K) of polycrystalline samples of solid solutions based on gadolinium and dysprosium sulfides of compositions γ‑GdxDy1 – xS1.49 (x = 0.1, 0.2, 0.3, 0.4) have been studied. It is found that the morphological features of the samples, namely, specifically of the crystallite surface that causes a change in the number of the deformation centers, determines the thermal conductivity of γ-GdxDy1 – xS1.49 solid solutions; the thermal conductivity of the composition with x = 0.2 is found to decrease anomalously. For this composition, the lowest values of the Seebeck coefficient –371 μV/K at 873 K, resistivity 880 μΩ m at 873 K, and the thermal conductivity coefficient 0.68 ± 0.03 W/m K at 770 K have been obtained; in this case, the thermoelectric figure of merit achieves the value ZT = 0.23.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. J. He, M. G. Kanatzidis, and V. P. Dravid, Mater. Today 16, 166 (2013).

    Article  Google Scholar 

  2. D. K. Aswal, R. Basu, and A. Singh, Energy Convers. Manage. 114, 50 (2016).

    Article  Google Scholar 

  3. T. M. Tritt, H. Bottner, and L. Chen, MRS Bull. 33, 366 (2008).

    Article  Google Scholar 

  4. W. Liu, Q. Jie, H. S. Kim, and Z. Ren, Acta Mater. 87, 357 (2008).

    Article  Google Scholar 

  5. M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren, and G. Chen, Energy Environ. Sci. 5, 5147 (2012).

    Article  Google Scholar 

  6. L. E. Bell, Science (Washington, DC, U. S.) 321, 1457 (2008).

    Article  ADS  Google Scholar 

  7. J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, Angew. Chem., Int. Ed. 48, 8616 (2009).

    Article  Google Scholar 

  8. G. J. Snyder and E. S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  ADS  Google Scholar 

  9. A. V. Shevelkov, Russ. Chem. Rev. 77, 1 (2008).

    Article  ADS  Google Scholar 

  10. R. Zevenhoven and A. Beyene, Energy 36, 3754 (2011).

    Article  Google Scholar 

  11. J. Yang and T. Caillat, MRS Bull. 31, 224 (2006).

    Article  Google Scholar 

  12. S. LeBlanc, Sustain. Mater. Technol. 1, 26 (2014).

    Google Scholar 

  13. G. S. Nolas, J. Poon, and M. Kanatzidis, MRS Bull. 31, 199 (2006).

    Article  Google Scholar 

  14. G. Tan, M. Ohta, and M. G. Kanatzidis, Philos. Trans. A 377, 20180450 (2019).

    Article  ADS  Google Scholar 

  15. G. G. Gadzhiev, Sh. M. Ismailov, Kh. Kh. Abdulaev, M. M. Khamidov, and Z. M. Omarov, High Temp. 39, 407 (2001).

    Article  Google Scholar 

  16. S. M. Luguev, N. V. Lugueva, and V. V. Sokolov, Sov. Phys. Solid State 30, 504 (1988).

    Google Scholar 

  17. C. Wood, A. Lockwood, J. Parker, A. Zoltan, D. Zoltan, L. R. Danielson, and V. Raag, J. Appl. Phys. 58, 1542 (1985).

    Article  ADS  Google Scholar 

  18. S. M. Luguev, N. V. Lugueva, and V. V. Sokolov, in Proceedings of the 13th International Seminar on Thermoelectrics and their Applications,2012, p. 1.

  19. M. Ohta and S. Hirai, J. Electron. Mater. 38, 1287 (2009).

    Article  ADS  Google Scholar 

  20. M. Ohta, S. Hirai, and T. Kuzuya, J. Electron. Mater. 40, 537 (2011).

    Article  ADS  Google Scholar 

  21. V. V. Bakovets, A. V. Sotnikov, A. Sh. Agazhanov, S. V. Stankus, E. V. Korotaev, D. P. Pishchur, and A. I. Shkatulov, J. Am. Ceram. Soc. 101, 4773 (2018).

    Article  Google Scholar 

  22. S. M. Luguev, N. V. Lugueva, and V. V. Sokolov, Phys. Solid State 42, 1045 (2000).

    Article  ADS  Google Scholar 

  23. A. V. Sotnikov, V. V. Bakovets, A. Sh. Agazhanov, S. V. Stankus, D. P. Pishchur, and V. V. Sokolov, Phys. Solid State 60, 487 (2018).

    Article  ADS  Google Scholar 

  24. S. M. Luguev, N. V. Lugueva, and V. V. Sokolov, Thermophys. Aeromech. 19, 343 (2012).

    Article  ADS  Google Scholar 

  25. H. S. Nalwa, Nanostructured Materials and Nanotechnology (Academic, New York, 2001).

    Google Scholar 

  26. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  27. V. V. Bakovets, L. N. Trushnikova, I. V. Korol’kov, P. E. Plyusnin, I. P. Dolgovesova, T. D. Pivovarova, and N. I. Alferova, Russ. J. Gen. Chem. 83, 1 (2013).

    Article  Google Scholar 

  28. M. Ohta, S. Hirai, H. Kato, V. V. Sokolov, and V. V. Bakovets, Mater. Trans. 50, 1885 (2009).

    Article  Google Scholar 

  29. L. S. Chuchalina, I. G. Vasil’eva, A. A. Kamarzin, and V. V. Sokolov, Zh. Anal. Khim. 33, 190 (1978).

    Google Scholar 

  30. T. G. Arkatova, B. P. Zhuze, M. G. Karii, A. A. Kamarzin, A. A. Kukharskii, B. A. Mikhailov, and A. I. Shelykh, Sov. Phys. Solid State 21, 1979 (1979).

    Google Scholar 

  31. B. A. Kolesov, A. A. Kamarzin, and V. V. Sokolov, Zh. Strukt. Khim. 38, 655 (1997).

    Google Scholar 

  32. D. S. Knight and W. B. White, Spectrochim. Acta 46, 381 (1990).

    Article  Google Scholar 

  33. G. G. Gadzhiev, Sh. M. Ismailov, M. A. Aidamirov, G. N. Dronova, P. P. Khokhlachev, and M.-R. M. Magomedov, Inorg. Mater. 33, 335 (1997).

    Google Scholar 

  34. V. V. Sokolov, V. V. Bakovetz, S. M. Luguev, and N. V. Lugueva, Adv. Mater. Phys. Chem. 2, 25 (2012).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank D.P. Pishchur and N. Fujimoto for the measurements of thermoelectric properties, E.V. Korotaev for conducting measurements of magnetic properties and I.Yu. Filatova and for helping with the synthesis of solid solutions of rare-earth sulfides.

Funding

This work was performed in the framework of the state task to Nikolaev Institute of Inorganic Chemistry of Siberian Branch of the Russian Academy of Sciences NIIC SB RAS in the field of fundamental research. The measurements of the thermal diffusivity were performed in the framework of the state task to IT SB RAS (project no. AAAA-A17-117022850029-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sotnikov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotnikov, A.V., Bakovets, V.V., Ohta, M. et al. Morphology and the Thermoelectric Properties of γ-GdxDy1 – xS1.5 – y Solid Solution Ceramics. Phys. Solid State 62, 611–620 (2020). https://doi.org/10.1134/S1063783420040216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420040216

Keywords:

Navigation