Skip to main content
Log in

Effect of Synthesis Conditions on the Structural, Photocatalic, and Self-Cleaning Properties of TiO2 Nanoparticles

  • SEMICONDUCTORS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

TiO2 nanoparticles were synthesized via the hydrothermal method. As-synthesized TiO2 properties were characterized by XRD, EDX, FESEM, FTIR, and UV-Vis spectroscopy. Indicated peaks in XRD patterns confirm formation of TiO2 nanoparticles with the anatase phase. Average crystallite sizes and strain were estimated from the XRD main peaks of all samples through Williamson–Hall method. Optical energy band gap of TiO2 was determined to be about 3.27–3.44 eV, which appeared higher than those of other researches for anatase TiO2 (3.20 eV). Also, increasing temperatures and aging times make the crystallite size increase and the energy band gap decrease. Photocatalytic activity of samples was examined by measuring rate of methylene blue (MB) decomposition. In photocatalytic process, MB was degraded by photocatalytic and adsorption processes. Aging temperature and time were significant in terms of the MB decolorization ability. The optimal synthesis condition of temperature and aging time was obtained at about 130°C and 16 h, respectively. TiO2 nanopowder prepared in the previous step was deposited by the spin-coating method on a glass substrate. Self-cleaning properties of the glass substrate coated with TiO2 nanoparticles were studied by measuring the water contact angle. TiO2 thin films have little photocatalytic activity because of their low area. To overcome this disadvantage, TiO2 porous thin films were deposited on glass substrates using polyethylene glycol (PEG) as a template pore-generating agent. TiO2 thin film with 20 wt % PEG showed better hydrophilic property and a better self-cleaning property. Enhancement of surface wettability due to UV-induced TiO2 hydrophilicity has been evidenced by contact angle measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.

Similar content being viewed by others

REFERENCES

  1. M. Stamate and G. Lazar, Model. Optim. Mach. Build. Field 13, 280 (2007).

    Google Scholar 

  2. R. Vinu and G. Madras, J. Indian Inst. Sci. 90, 189 (2012).

    Google Scholar 

  3. K. Hashimoto, H. Irie, and A. Fujishima, Jpn. J. Appl. Phys. 44, 8269 (2005).

    Article  ADS  Google Scholar 

  4. C. Xue, J. Wu, F. Lan, W. Liu, X. Yang, F. Zeng, and H. Xu, J. Nanosci. Nanotechnol. 10, 8500 (2010).

    Article  Google Scholar 

  5. J. Petkovic, B. Zegura, M. Stevanovic, N. Drnovsek, D. Uskokovic, S. Novak, and M. Filipic, Nanotoxicology 5, 341 (2011).

    Article  Google Scholar 

  6. A. Baldan, J. Mater. Sci. 37, 2171 (2002).

    Article  ADS  Google Scholar 

  7. J. Zhang, P. Zhou, J. Liu, and J. Yu, Phys. Chem. Chem. Phys. 16, 20382 (2014).

    Article  Google Scholar 

  8. M. Adachi, Y. Murata, J. Takao, J. Jiu, M. Sakamoto, and F. Wang, J. Am. Chem. Soc. 126, 14943 (2004).

    Article  Google Scholar 

  9. K. Maeda, A. Xiong, T. Yoshinaga, T. Ikeda, N. Sakamoto, T. Hisatomi, M. Takashima, D. Lu, M. Kanehara, T. Setoyama, et al., Angew. Chem. Int. Ed. Engl. 49, 4096 (2010).

    Article  Google Scholar 

  10. M. D. Hernández-Alonso, F. Fresno, S. Suárez, and J. M. Coronado, Energy Environ. Sci. 2, 1231 (2009).

    Article  Google Scholar 

  11. O. Carp, C. L. Huisman, and A. Reller, Prog. Solid State Chem. 32, 133 (2004).

    Article  Google Scholar 

  12. M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, Chem. Rev. 95, 69 (1995).

    Article  Google Scholar 

  13. A. L. Linsebigler, G. Q. Lu, and J. T. Yates, Chem. Rev. 95, 735 (1995).

    Article  Google Scholar 

  14. K. Maeda and K. Domen, J. Phys. Chem. Lett. 1, 2655 (2010).

    Article  Google Scholar 

  15. A. Fujishima, T. N. Rao, and D. A. Tryk, J. Photochem. Photobiol. C 1, 1 (2000).

    Article  Google Scholar 

  16. J. Choina, H. Duwensee, G. U. Flechsig, H. Kosslick, A. W. Morawski, V. A. Tuan, and A. Schulz, Cent. Eur. J. Chem. 8, 1288 (2010).

    Google Scholar 

  17. B. Jalvo, M. Faraldos, A. Bahamonde, and R. Rosal, J. Hazard. Mater. 340, 160 (2017).

    Article  Google Scholar 

  18. B. Y. L. Tan, M. H. Tai, J. Juay, Z. Liu, and D. Sun, Sep. Purif. Technol. 156, 942 (2015).

    Article  Google Scholar 

  19. S. M. Kim, I. In, and S. Y. Park, Surf. Coat. Technol. 294, 75 (2016).

    Article  Google Scholar 

  20. L. Zhang, Y. Wang, and R. Yu, Shanghai Text Sci. Technol. 43, 54 (2015).

    Google Scholar 

  21. Y. Li, T. J. White, and S. H. Lim, J. Solid State Chem. 177, 1372 (2004).

    Article  ADS  Google Scholar 

  22. J. Yang, S. Mei, and J. M. F. Ferreira, Mater. Sci. Eng. C 15, 183 (2001).

    Article  Google Scholar 

  23. P. Billik and G. Plesch, Scr. Mater. 56, 979 (2007).

    Article  Google Scholar 

  24. J. G. Li, H. Kamiyama, X. H. Wang, Y. Moriyoshi, and T. Ishigaki, J. Eur. Ceram. Soc. 26, 423 (2006).

    Article  Google Scholar 

  25. J. H. Yu, S. Y. Kim, J. S. Lee, and K. H. Ahn, Nanostruct. Mater. 12, 199 (1999).

    Article  Google Scholar 

  26. G. Chen, G. Luo, X. Yang, Y. Sun, and J. Wang, Mater. Sci. Eng. A 380, 320 (2004).

    Article  Google Scholar 

  27. R. Ciardiello, M. Commodo, P. del Gaudio, P. Minutolo, A. Porta, and A. D’Anna, Surf. Coat. Technol. 349, 830 (2018).

    Article  Google Scholar 

  28. R. Camarillo, S. Tostón, F. Martínez, C. Jiménez, and J. Rincón, J. Chem. Technol. Biotechnol. 92, 1710 (2017).

    Article  Google Scholar 

  29. Z. Antic, R. M. Krsmanovic, M. G. Nikolic, M. M. Cin-covic, M. Mitric, S. Polizzi, and M. D. Dramicanin, Mater. Chem. Phys. 135, 1064 (2012).

    Article  Google Scholar 

  30. H. M. Chenari, C. Seibel, D. Hauschild, F. Reinert, and H. Abdollahia, Mater. Res. 19, 1319 (2016).

    Article  Google Scholar 

  31. B. Cullity, Elements of X-Ray Diffraction (Addision-Wesley, Boston, 1978).

    Google Scholar 

  32. A. K. Zak, H. Z. Wang, R. Yousefi, A. M. Golsheikh, and Z. F. Ren, Ultrason. Sonochem. 20, 395 (2013).

    Article  Google Scholar 

  33. A. K. Zak, W. A. Majid, M. E. Abrishami, and R. Yousefi, Solid State Sci. 13, 251 (2011).

    Article  ADS  Google Scholar 

  34. L. Corbari, M. A. Cambon-Bonavita, G. J. Long, F. Grandjean, M. Zbinden, F. Gaill, and P. Compere, Biogeosci. Discuss. 5, 1825 (2008).

    Article  ADS  Google Scholar 

  35. M. Chellappa, U. Anjaneyulu, G. Manivasagam, and U. Vijayalakshmi, Int. J. Nanomed. 10, 31 (2011).

    Google Scholar 

  36. J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi B 15, 627 (1966).

    Article  ADS  Google Scholar 

  37. S. Auvinen, M. Alatalo, H. Haario, J. P. Jalava, and R. J. Lamminmäki, J. Phys. Chem. C 115, 8484 (2011).

    Article  Google Scholar 

  38. M. A. Rauf and S. S. Ashraf, Chem. Eng. J. 151, 10 (2009).

    Article  Google Scholar 

  39. F. Sayilkan and F. B. Emre, Turk. J. Chem. 40, 28 (2016).

    Article  Google Scholar 

  40. Z. He, Q. Cai, H. Fang, G. S. Jianping, Q. S. Song, and J. Chen, J. Environ. Sci. 25, 2460 (2013).

    Article  Google Scholar 

  41. S. M. Kim, I. In, and S. Y. Park, Surf. Coat. Technol. 294, 75 (2016).

    Article  Google Scholar 

  42. F. Li, Q. Li, and H. Kim, Appl. Surf. Sci. 276, 390 (2013).

    Article  ADS  Google Scholar 

  43. A. Nakajima, K. Hashimoto, T. Watanabe, K. Takai, G. Yamauchi, and A. Fujishima, Langmuir 16, 7044 (2000).

    Article  Google Scholar 

  44. M. Zhou, J. Yu, and B. Cheng, J. Hazard. Mater. 137, 1838 (2006).

    Article  Google Scholar 

  45. Z. Liu, Y. Wang, X. Peng, Y. Li, Z. Liu, C. Liu, J. Ya, and Y. Huang, Sci. Technol. Adv. Mater. 13, 025001 (2012).

    Article  Google Scholar 

  46. J. H. Park and N. R. Aluru, Mol. Simul. 35, 31 (2009).

    Article  Google Scholar 

  47. S. H. Nam, S. J. Cho, C. K. Jung, J. H. Boo, J. Šícha, D. Heřman, J. Musil, and J. Vlček, Thin Solid Films 519, 6944 (2011).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank University of Guilan for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Farjami Shayesteh.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahmati Ali Abad, M., Shayesteh, S.F. & Shayesteh, H.F. Effect of Synthesis Conditions on the Structural, Photocatalic, and Self-Cleaning Properties of TiO2 Nanoparticles. Phys. Solid State 62, 120–130 (2020). https://doi.org/10.1134/S1063783420010023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420010023

Keywords:

Navigation