Skip to main content
Log in

Microcrystalline Structure and Light-Emitting Properties of 3C–SiC Island Films Grown on the Si(100) Surface

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The crystal structure features and light-emitting properties of 3C–SiC island films grown at decreased temperatures on the Si(100) surface by vacuum chemical epitaxy with the use of hydrogen-containing compounds are studied. The nucleation character and growth mechanisms of the nanocrystalline texture of microislands and the effect of elastic stresses accumulated on the surface of a growing carbide film on the shape of nucleating islands are traced by the methods of microscopy. The cathodoluminescence spectra from the surface carbidized Si layer and different areas of an individual 3C–SiC island are compared. The possible mechanisms of the appearance of additional spectral lines shifted with respect to the major peak towards the red and ultraviolet spectral regions in the observed spectra of epitaxial structures are discussed. These emission bands were earlier revealed only in the luminescence spectra of SiC nanocrystallites embedded into different (most often SiO2) matrices. The comparative analysis of the behavior of lines in the observed luminescent spectra has not revealed any appreciable size effect of formed surface nanocrystallites on their positions, but demonstrated their evident dependence on the oxygen content at the 3C–SiC layer/silicon substrate interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. A. Lebedev, A. M. Strel’chuk, S. Yu. Davydov, A. E. Cherenkov, A. N. Kuznetsov, A. S. Tregubova, L. M. Sorokin, M. P. Shcheglov, A. V. Sadokhin, S. Yoneda, and Sh. Nishino, Semiconductors 40, 1398 (2006).

    Article  ADS  Google Scholar 

  2. K. W. Ang, K. J. Chui, V. Bliznetsov, C. H. Tung, A. Du, N. Balasubramanian, G. Samudra, M. F. Li, and Y. C. Yeo, Appl. Phys. Lett. 86, 093102 (2005).

    Article  ADS  Google Scholar 

  3. W. T. Hsieh, Y. K. Fang, W. J. Lee, C. W. Ho, K. H. Wu, and J. J. Ho, Electr. Lett. 36, 1869 (2000).

    Article  Google Scholar 

  4. S. A. Kukushkin, A. V. Osipov, and N. A. Feoktistov, Phys. Solid State 56, 1507 (2014).

    Article  ADS  Google Scholar 

  5. J. Y. Fan, X. L. Wu, and P. K. Chu, Progr. Mater. Sci. 51, 983 (2006).

    Article  Google Scholar 

  6. V. I. Sankin and I. A. Stolichnov, JETP Lett. 64, 114 (1996).

    Article  ADS  Google Scholar 

  7. J. Zhu, Z. Liu, X. L. Wu, L. L. Xu, W. S. Zhang, and P. K. Chu, Nanotechnology 18, 365603 (2007).

    Article  Google Scholar 

  8. T. L. Rittenhouse, P. W. Bohn, T. K. Hossain, I. Adesida, J. Lindesay, and A. Marcus, J. Appl. Phys. 95, 490 (2004).

    Article  ADS  Google Scholar 

  9. X. L. Wu, J. Y. Fan, T. Qiu, X. Yang, G. G. Siu, and P. K. Chu, Phys. Rev. Lett. 94, 026102 (2005).

    Article  ADS  Google Scholar 

  10. L. Zhang, W. Yang, H. Jin, Z. Zheng, Z. Xie, H. Miao, and L. An, Appl. Phys. Lett. 89, 143101 (2006).

    Article  ADS  Google Scholar 

  11. L. K. Orlov, Yu. N. Drozdov, N. A. Alyabina, N. L. Ivina, V. I. Vdovin, and I. N. Dmitruk, Phys. Solid State 51, 474 (2009).

    Article  ADS  Google Scholar 

  12. M. Kitabatake, M. Deguchi, and T. Hirao, J. Appl. Phys. 74, 4438 (1993).

    Article  ADS  Google Scholar 

  13. Z. I. Liu, J. F. Liu, P. Ren, and P. S. Xu, J. Phys.: Conf. Ser. 100, 042040 (2008).

    Google Scholar 

  14. I. H. Khan and R. H. Summergrad, J. Vac. Sci. Technol. 4, 327 (1967).

    Google Scholar 

  15. T. Yoshinobu, H. Mitsui, Y. Tarui, T. Fuyuki, and H. Matsunami, J. Appl. Phys. 72, 2006 (1992).

    Article  ADS  Google Scholar 

  16. L. K. Orlov, Yu. N. Drozdov, V. B. Shevtsov, V. A. Bozhenkin, and V. I. Vdovin, Phys. Solid State 49, 627 (2007).

    Article  ADS  Google Scholar 

  17. S. A. Kukushkin and A. V. Osipov, Phys. Solid State 50, 1238 (2008).

    Article  ADS  Google Scholar 

  18. R. Anzalone, A. Severino, G. D' Arrigo, C. Bongiorno, G. Abbondanza, G. Foti, S. Saddow, and F. La Via, J. Appl. Phys. 105, 084910 (2009).

    Article  ADS  Google Scholar 

  19. L. K. Orlov, E. A. Shteinman, T. N. Smyslova, N. L. Ivina, and A. N. Tereshchenko, Phys. Solid State 54, 708 (2012).

    Article  ADS  Google Scholar 

  20. C. S. Roper, V. Radmilovic, R. T. Howe, and R. Maboudian, J. Appl. Phys. 103, 084907 (2008).

    Article  ADS  Google Scholar 

  21. A. A. Lebedev and S. Yu. Davydov, Semiconductors 39, 277 (2005).

    Article  ADS  Google Scholar 

  22. L. K. Orlov, Yu. N. Drozdov, M. N. Drozdov, O. A. Pod’yacheva, and V. I. Vdovin, J. Struct. Chem. 51, S148 (2010).

    Article  Google Scholar 

  23. A. I. Nikiforov, V. V. Ulyanov, R. A. Shaiduk, S. A. Teys, F. K. Gutakovsky, and O. P. Pchelyakov, Int. J. Nanosci. 6, 297 (2007).

    Article  Google Scholar 

  24. I. A. Dmitriev and R. A. Suris, Semiconductors 36, 1364 (2002).

    Article  ADS  Google Scholar 

  25. M. L. Orlov, Yu. A. Romanov, and L. K. Orlov, Microelectron. J. 36, 396 (2005).

    Article  Google Scholar 

  26. V. I. Sankin and A. A. Lepneva, Semiconductors 34, 803 (2000).

    Article  ADS  Google Scholar 

  27. G. B. Dubrovskii and Yu. V. Pogorel’skii, Sov. Phys. Semicond. 8, 530 (1974).

    Google Scholar 

  28. L. K. Orlov, Yu. N. Drozdov, V. I. Vdovin, Yu. I. Tarasova, and T. N. Smyslova, Phys. Solid State 51, 1077 (2009).

    Article  ADS  Google Scholar 

  29. F. M. Morales, Ch. Zgheib, S. I. Molina, D. Araujo, R. Garcia, C. Fernandez, A. Sanz-Hervas, P. Weih, Th. Stauden, V. Cimalla, O. Ambacher, and J. Pezoldt, Phys. Status Solidi C 1, 341 (2004).

    Article  ADS  Google Scholar 

  30. V. I. Stafeev, Sov. Phys. Semicond. 5, 359 (1971).

    Google Scholar 

  31. H. W. Shim, K. C. Kim, Y. H. Seo, K. S. Nahm, E. K. Suh, H. J. Lee, and Y. G. Hwang, Appl. Phys. Lett. 70, 1757 (1997).

    Article  ADS  Google Scholar 

  32. J. N. Wang, Z. M. Chen, P. W. Woo, W. K. Ge, Y. Q. Wang, and M. B. Yu, Appl. Phys. Lett. 74, 923 (1999).

    Article  ADS  Google Scholar 

  33. A. A. Porporati, K. Hosokawa, W. Zhu, and G. Pezzotti, J. Appl. Phys. 100, 093508 (2006).

    Article  ADS  Google Scholar 

  34. H. Shen, T. Wu, Yu. Pan, L. Zhang, B. Cheng, and Z. Yue, Thin Solid Films 522, 36 (2012).

    Article  ADS  Google Scholar 

  35. L. K. Orlov, E. A. Shteinman, N. L. Ivina, and V. I. Vdovin, Phys. Solid State 53, 1798 (2011).

    Article  ADS  Google Scholar 

  36. A. Perez-Rodrigues, O. Gonzales-Varona, B. Garrido, P. Pellegrino, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, J. Appl. Phys. 94, 254 (2003).

    Article  ADS  Google Scholar 

  37. A. V. Semenov, A. V. Lopin, V. M. Puzikov, O. M. Vovk, I. N. Dmitruk, and V. Romano, Thin Solid Films 520, 6626 (2012).

    Article  ADS  Google Scholar 

  38. J. S. Shor, L. Bemis, A. D. Kurtz, I. Grimberg, B. Z. Weiss, M. F. MacMillian, and W. J. Choyke, J. Appl. Phys. 76, 4045 (1994).

    Article  ADS  Google Scholar 

  39. C. Wen, Y. M. Wang, W. Wan, F. H. Li, J. W. Liang, and J. Zou, J. Appl. Phys. 106, 073522 (2009).

    Article  ADS  Google Scholar 

  40. F. M. Morales, S. I. Molina, D. Araujo, R. Carcia, V. Cimalla, and J. Pezoldt, Diamond Rel. Mater. 12, 1227 (2003).

    Article  ADS  Google Scholar 

  41. R. Goswami, C. H. Li, G. G. Jernigan, P. E. Thompson, C. S. Hellberg, and B. T. Jonker, Acta Mater. 65, 418 (2014).

    Article  Google Scholar 

  42. A. P. Baraban, V. A. Dmitriev, Yu. V. Petrov, and K. A. Timofeeva, Phys. Solid State 54, 1149 (2012).

    Article  ADS  Google Scholar 

  43. L. K. Orlov, V. I. Vdovin, N. L. Ivina, E. A. Shteinman, M. L. Orlov, Yu. N. Drozdov, and V. F. Petrova, J. Struct. Chem. 55, 1180 (2014).

    Article  Google Scholar 

  44. L. K. Orlov, Z. J. Horvath, N. L. Ivina, V. I. Vdovin, E. A. Steinman, M. L. Orlov, and Yu. A. Romanov, Opto-Electron. Rev. 11, 169 (2003).

    Google Scholar 

  45. S. Nishikawa, H. Hashimoto, M. Chikamoto, K. Horikoshi, M. Aoki, K. Arima, Ju. Uchikosi, and M. Morita, Thin Solid Films 508, 385 (2006).

    Article  ADS  Google Scholar 

  46. R. Rahimi, C. M. Miller, S. Raghavan, C. D. Stinespring, and D. Korakakis, J. Phys. D 42, 055108 (2009).

    Article  ADS  Google Scholar 

  47. K. H. Wu, Y. K. Fang, J. J. Ho, W. T. Hsieh, and T. J. Chen, IEEE Electron Dev. Lett. 19, 294 (1998).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors of this paper are grateful to M.N. Drozdov (Shared Facilities Center, Institute for Physics of Microstructures, Russian Academy of Sciences) for recording the SIMS spectra and the personnel of the Interdisciplinary Resource Center “Nanotechnologies” of the Saint-Petersburg State University and the Shared Facilities Center of the Rzhanov Institute of Semiconductor Physics (Siberian Branch, Russian Academy of Sciences) for their help in microscopic and luminescent studies.

Funding

This work was supported by the Russian Foundation for Basic Research (grant no. 18-42-520062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. K. Orlov.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orlov, L.K., Vdovin, V.I. & Ivina, N.L. Microcrystalline Structure and Light-Emitting Properties of 3C–SiC Island Films Grown on the Si(100) Surface. Phys. Solid State 61, 1263–1271 (2019). https://doi.org/10.1134/S1063783419070217

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419070217

Navigation