Skip to main content
Log in

Effect of unsteady-state conduction of a high-resistance SrTiO3 crystal containing a network of conductive nanowires

  • Dielectrics
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The electrical conduction of a high-resistance SrTiO3 crystal due to the presence of conductive nanowires in the bulk of the sample exhibits an unsteady-state behavior, which, in particular, manifests itself in a long-term decrease of the electric current at a fixed value of the applied voltage. This process, as well as the recovery of the initial conduction, is characterized by a wide range of times from several tens of seconds to ten days. It has been found that a decrease in the electric current is associated with a change of the electrical conductivity in the reverse-biased contact region most likely due to an increase in the height/width of the surface barrier. The modulation of the energy profile of the barrier can have a multidirectional character depending on the sign of the charge formed with the participation of surface states at the electrode–crystal interface. The results obtained have made it possible to elucidate the mechanism of charge transfer in local regions of the contact, where metallic nanowires penetrate deep enough into the depleted barrier layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. I. Shablaev and A. I. Grachev, Phys. Solid State 56 (4), 682 (2014).

    Article  ADS  Google Scholar 

  2. S. I. Shablaev and A. I. Grachev, Phys. Solid State 57 (8), 1500 (2015).

    Article  ADS  Google Scholar 

  3. S. I. Shablaev and A. I. Grachev, Phys. Solid State 58 (5), 933 (2016).

    Article  ADS  Google Scholar 

  4. K. Szot, W. Speier, R. Carius, U. Zastrow, and W. Beyer, Phys. Rev. Lett. 88, 75508 (2002).

    Article  ADS  Google Scholar 

  5. K. Szot, W. Speier, G. Bihlmayer, and R. Waser, Nat. Mater. 5, 312 (2006).

    Article  ADS  Google Scholar 

  6. R. Waser, R. Dittmann, G. Staikov, and K. Szot, Adv. Mater. (Weinheim) 21, 2632 (2009).

    Article  Google Scholar 

  7. R. Muenstermann, T. Menke, R. Dittmann, and R. Waser, Adv. Mater. (Weinheim) 22, 4819 (2010).

    Article  Google Scholar 

  8. R. Waser and M. Klee, Integr. Ferroelectr. 2, 257 (1992).

    Article  Google Scholar 

  9. C. Ni, S. M. Guo, H. F. Tian, Y. G. Zhao, and J. Q. Li, Appl. Phys. Lett. 91, 183502 (2007).

    Article  ADS  Google Scholar 

  10. H.-J. Zhang, X- P. Zhang, and Y.-G. Zhao, Chin. Phys. Lett. 26, 077303 (2009).

    Article  ADS  Google Scholar 

  11. X. B. Yan, K. Li, J. Yin, Y. D. Xia, H. X. Guo, L. Chen, and Z. G. Liua, Electrochem. Solid-State Lett. 13, H87 (2010).

    Article  Google Scholar 

  12. Z. B. Yan and J.-M. Liu, Sci. Rep. 3, 2482 (2014).

    Google Scholar 

  13. D. Kan and Y. Shimakawa, Appl. Phys. Lett. 103, 142910 (2013).

    Article  ADS  Google Scholar 

  14. X-B. Yin, Z-H. Tan, and X. Guo, Phys. Chem. Chem. Phys 17, 134 (2015).

    Article  Google Scholar 

  15. E. Mikheev, B. D. Hoskins, D. B. Strukov, and S. Stemmer, Nat. Commun. 5, 3990 (2014).

    Article  ADS  Google Scholar 

  16. E. Mikheev, J. Hwang, A. P. Kajdos, A. J. Hauser, and S. Stemmer, Sci. Rep. 5, 11079 (2015).

    Article  ADS  Google Scholar 

  17. C. Sudhama, A. C. Campbell, P. D. Maniar, R. E. Jones, R. Moazzami, C. J. Mogab, and J. C. Lee, J. Appl. Phys. 75, 1014 (1994).

    Article  ADS  Google Scholar 

  18. S.-G. Yoon, A. I. Kingon, and S.-H. Kim, J. Appl. Phys. 88, 6690 (2000).

    Article  ADS  Google Scholar 

  19. B. Nagaraj, S. Aggarwal, and R. Ramesh, J. Appl. Phys. 90, 375 (2001).

    Article  ADS  Google Scholar 

  20. I. Stolichnov and A. Tagantsev, J. Appl. Phys. 84, 3216 (1998).

    Article  ADS  Google Scholar 

  21. E. H. Rhoderick, Metal–Semiconductor Contacts (Clarendon, Oxford, 1978; Radio i Svyaz’, Moscow, 1982).

    Google Scholar 

  22. G. D. J. Smit, S. Rogge, and T. M. Klapwijk, Appl. Phys. Lett. 81, 3852 (2002).

    Article  ADS  Google Scholar 

  23. J. Hou, S. S. Nonnenmann, W. Qin, and D. A. Bonnell, Adv. Funct. Mater. 24, 4113 (2014).

    Article  Google Scholar 

  24. Y. B. Zhu and L. K. Ang, Sci. Rep. 5, 9173 (2015).

    Article  ADS  Google Scholar 

  25. B. K. Readly, Proc. Phys. Soc. 82, 954 (1963).

    Article  ADS  Google Scholar 

  26. A. Thanailakis and D. C. Northop, J. Phys. D: Appl. Phys. 4, 1776 (1971).

    Article  ADS  Google Scholar 

  27. E. M. Bourim, Y. Kim, and D.-W. Kim, ECS J. Solid State Sci. Technol. 3 (7), N95 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Grachev.

Additional information

Original Russian Text © S.I. Shablaev, A.I. Grachev, 2016, published in Fizika Tverdogo Tela, 2016, Vol. 58, No. 10, pp. 1890–1894.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shablaev, S.I., Grachev, A.I. Effect of unsteady-state conduction of a high-resistance SrTiO3 crystal containing a network of conductive nanowires. Phys. Solid State 58, 1956–1961 (2016). https://doi.org/10.1134/S1063783416100322

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783416100322

Navigation