Skip to main content

Resistive States in Strontium Titanate Thin Films: Bias Effects and Mechanisms at High and Low Temperatures

  • Chapter
  • First Online:
Resistive Switching: Oxide Materials, Mechanisms, Devices and Operations

Part of the book series: Electronic Materials: Science & Technology ((EMST))

  • 1068 Accesses

Abstract

A study on charge transport properties of thin film Fe-doped SrTiO3 epitaxially grown on Nb-doped SrTiO3 is reported. Electric measurements between 350 °C and 750 °C show a transition from predominant ionic to electronic conduction and lower conductivity of the thin films compared to the bulk of polycrystalline samples. Defect chemical changes at elevated temperature were investigated by applying a bias voltage. A model is described that successfully predicts additional features such as inductive loops or extra semicircles measureable by impedance spectroscopy as well as the complicated time dependence of electric DC measurements. With this model, it is also possible to calculate the negligibly small ionic conductivity next to the dominating electronic conductivity in the high temperature regime. The ionic conductivity is referenced by oxygen isotope depth profiling. Changes in resistive states in Fe-doped SrTiO3 thin films at high temperature and moderate fields are compared to room temperature resistive switching phenomena at high electric fields. A conductive filament-based switching process is observed at room temperature, and the capability for forming such filaments and their electric properties is further analyzed using microelectrodes.

This chapter was originally published as a paper in the Journal of Electroceramics: M. Kubicek, S. Taibl, E. Navickas, H. Hutter, G. Fafilek, “Resistive states in strontium titanate thin films: Bias effects and mechanisms at high and low temperature,” J Electroceramics, Vol. 39, nos 1–4 (2017), Pages 197–209. DOI: http://dx.doi.org/10.1007/s10832-017-0081-2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Merkle, J. Maier, How is oxygen incorporated into oxides? A comprehensive kinetic study of a simple solid-state reaction with SrTiO3 as a model material. Angew. Chem. Int. Ed. 47, 3874–3894 (2008)

    Article  CAS  Google Scholar 

  2. N. Setter, R. Waser, Electroceramic materials. Acta Mater. 48, 151–178 (2000)

    Article  CAS  Google Scholar 

  3. N.H. Chan, R.K. Sharma, D.M. Smyth, Nonstoichiometry in SrTiO3. J. Electrochem. Soc. 128, 1762–1769 (1981)

    Article  CAS  Google Scholar 

  4. R.A. De Souza, V. Metlenko, D. Park, T.E. Weirich, Behavior of oxygen vacancies in single-crystal SrTiO3: equilibrium distribution and diffusion kinetics. Phys. Rev. B 85, 174109 (2012)

    Article  CAS  Google Scholar 

  5. R. Moos, K.H. Härdtl, Defect chemistry of donor-doped and undoped strontium titanate ceramics between 1000 °C and 1400 °C. J. Am. Ceram. Soc. 80, 2549–2562 (1997)

    Article  CAS  Google Scholar 

  6. A. Rothschild, W. Menesklou, H.L. Tuller, E. Ivers-Tiffée, Electronic structure, defect chemistry, and transport properties of SrTi1-xFexO3-y solid solutions. Chem. Mater. 18, 3651–3659 (2006)

    Article  CAS  Google Scholar 

  7. I. Denk, W. Munch, J. Maier, Partial conductivities in SrTiO3: bulk polarization experiments, oxygen concentration cell measurements, and defect-chemical modeling. J. Am. Ceram. Soc. 78, 3265–3272 (1995)

    Article  CAS  Google Scholar 

  8. W. Menesklou, H.-J. Schreiner, K.H. Härdtl, E. Ivers-Tiffée, High temperature oxygen sensors based on doped SrTiO3. Sens. Actuators, B 59, 184–189 (1999)

    Article  CAS  Google Scholar 

  9. S. Agarwal, G.L. Sharma, Humidity sensing properties of (Ba, Sr) TiO3 thin films grown by hydrothermal–electrochemical method. Sens. Actuators, B 85, 205–211 (2002)

    Article  CAS  Google Scholar 

  10. J.W. Fergus, Perovskite oxides for semiconductor-based gas sensors. Sens. Actuators, B 123, 1169–1179 (2007)

    Article  CAS  Google Scholar 

  11. S. Molin, W. Lewandowska-Iwaniak, B. Kusz, M. Gazda, P. Jasinski, Structural and electrical properties of Sr(Ti, Fe)O3-δ materials for SOFC cathodes. J. Electroceram. 28, 80–87 (2012)

    Article  CAS  Google Scholar 

  12. W. Jung, H.L. Tuller, A new model describing solid oxide fuel cell cathode kinetics: model thin film SrTi1-xFexO3-δ mixed conducting oxides–a case study. Adv. Energy Mater. 1, 1184–1191 (2011)

    Article  CAS  Google Scholar 

  13. A. Ohtomo, H.Y. Hwang, A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004)

    Article  CAS  Google Scholar 

  14. N. Reyren, S. Thiel, A.D. Caviglia, L.F. Kourkoutis, G. Hammerl, C. Richter, C.W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D.A. Muller, J.-M. Triscone, J. Mannhart, Superconducting interfaces between insulating oxides. Science 317, 1196–1199 (2007)

    Article  CAS  Google Scholar 

  15. J.H. Haeni, P. Irvin, W. Chang, R. Uecker, P. Reiche, Y.L. Li, S. Choudhury, W. Tian, M.E. Hawley, B. Craigo, A.K. Tagantsev, X.Q. Pan, S.K. Streiffer, L.Q. Chen, S.W. Kirchoefer, J. Levy, D.G. Schlom, Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004)

    Article  CAS  Google Scholar 

  16. M. Cardona, Optical properties and band structure of SrTiO3 and BaTiO3. Phys. Rev. 140, A651–A655 (1965)

    Article  Google Scholar 

  17. K. Zhao, K.-J. Jin, Y. Huang, S. Zhao, H. Lu, M. He, Z. Chen, Y. Zhou, G. Yang, Ultraviolet fast-response photoelectric effect in tilted orientation SrTiO3 single crystals. Appl. Phys. Lett. 89, 173507 (2006)

    Article  CAS  Google Scholar 

  18. Z. Hui, Y. Lei, U.H. Hans, Unusual ultraviolet photoconductivity in single crystalline SrTiO3. J. Phys. Condens. Matter 25, 035802 (2013)

    Article  CAS  Google Scholar 

  19. G.C. Brunauer, B. Rotter, G. Walch, E. Esmaeili, A.K. Opitz, K. Ponweiser, J. Summhammer, J. Fleig, UV-light-driven oxygen pumping in a high-temperature solid oxide photoelectrochemical cell. Adv. Funct. Mater. 26, 120–128 (2016)

    Article  CAS  Google Scholar 

  20. R. Merkle, R.A. De Souza, J. Maier, Optically tuning the rate of stoichiometry changes: surface-controlled oxygen incorporation into oxides under UV irradiation. Angew. Chem. Int. Ed. 40, 2126–2129 (2001)

    Article  CAS  Google Scholar 

  21. A. Mills, S. Le Hunte, An overview of semiconductor photocatalysis. J. Photochem. Photobiol. A Chem. 108, 1–35 (1997)

    Article  CAS  Google Scholar 

  22. J.G. Mavroides, J.A. Kafalas, D.F. Kolesar, Photoelectrolysis of water in cells with SrTiO3 anodes. Appl. Phys. Lett. 28, 241–243 (1976)

    Article  CAS  Google Scholar 

  23. R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632 (2009)

    Article  CAS  Google Scholar 

  24. R. Muenstermann, T. Menke, R. Dittmann, R. Waser, Coexistence of filamentary and homogeneous resistive switching in Fe-doped SrTiO3 thin-film memristive devices. Adv. Mater. 22, 4819–4822 (2010)

    Article  CAS  Google Scholar 

  25. M. Kubicek, R. Schmitt, F. Messerschmitt, J.L.M. Rupp, Uncovering two competing switching mechanisms for epitaxial and ultrathin strontium titanate-based resistive switching bits. ACS Nano 9, 10737–10748 (2015)

    Article  CAS  Google Scholar 

  26. X. Guo, Roles of Schottky barrier and oxygen vacancies in the electroforming of SrTiO3. Appl. Phys. Lett. 101, 152903 (2012)

    Article  CAS  Google Scholar 

  27. K. Szot, W. Speier, G. Bihlmayer, R. Waser, Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5, 312–320 (2006)

    Article  CAS  Google Scholar 

  28. C. Ohly, S. Hoffmann-Eifert, X. Guo, J. Schubert, R. Waser, Electrical conductivity of epitaxial SrTiO3 thin films as a function of oxygen partial pressure and temperature. J. Am. Ceram. Soc. 89, 2845–2852 (2006)

    Article  CAS  Google Scholar 

  29. S. Taibl, G. Fafilek, J. Fleig, Impedance spectra of Fe-doped SrTiO3 thin films upon bias voltage: inductive loops as a trace of ion motion. Nanoscale 8, 13954–13966 (2016)

    Article  CAS  Google Scholar 

  30. R.A. De Souza, Oxygen diffusion in SrTiO3 and related perovskite oxides. Adv. Funct. Mater. 25, 6326–6342 (2015)

    Article  CAS  Google Scholar 

  31. P. Balaya, M. Ahrens, L. Kienle, J. Maier, B. Rahmati, S.B. Lee, W. Sigle, A. Pashkin, C. Kuntscher, M. Dressel, Synthesis and characterization of nanocrystalline SrTiO3. J. Am. Ceram. Soc. 89, 2804–2811 (2006)

    CAS  Google Scholar 

  32. P. Lupetin, G. Gregori, J. Maier, Mesoscopic charge carriers chemistry in nanocrystalline SrTiO3. Angew. Chem. Int. Ed. 49, 10123–10126 (2010)

    Article  CAS  Google Scholar 

  33. T.M. Huber, A.K. Opitz, M. Kubicek, H. Hutter, J. Fleig, Temperature gradients in microelectrode measurements: Relevance and solutions for studies of SOFC electrode materials. Solid State Ionics 268(Part A), 82–93 (2014)

    Article  CAS  Google Scholar 

  34. G. Holzlechner, M. Kubicek, H. Hutter, J. Fleig, A novel ToF-SIMS operation mode for improved accuracy and lateral resolution of oxygen isotope measurements on oxides. J. Anal. Atom. Spectrom. 28, 1080–1089 (2013)

    Article  CAS  Google Scholar 

  35. M. Kubicek, G. Holzlechner, A.K. Opitz, S. Larisegger, H. Hutter, J. Fleig, A novel ToF-SIMS operation mode for sub 100 nm lateral resolution: application and performance. Appl. Surf. Sci. 289, 407–416 (2014)

    Article  CAS  Google Scholar 

  36. T. Ohnishi, M. Lippmaa, T. Yamamoto, S. Meguro, H. Koinuma, Improved stoichiometry and misfit control in perovskite thin film formation at a critical fluence by pulsed laser deposition. Appl. Phys. Lett. 87, 241919 (2005)

    Article  CAS  Google Scholar 

  37. T. Ohnishi, K. Shibuya, T. Yamamoto, M. Lippmaa, Defects and transport in complex oxide thin films. J. Appl. Phys. 103, 103703 (2008)

    Article  CAS  Google Scholar 

  38. R.A. De Souza, J. Fleig, J. Maier, Electrical and structural characterization of a low-angle tilt grain boundary in iron-doped strontium titanate. J. Am. Ceram. Soc. 86, 922–928 (2003)

    Article  Google Scholar 

  39. R. Meyer, A.F. Zurhelle, R.A. De Souza, R. Waser, F. Gunkel, Dynamics of the metal-insulator transition of donor-doped SrTi O3. Phys. Rev. B 94, 115408 (2016)

    Article  Google Scholar 

  40. J. Fleig, The influence of non-ideal microstructures on the analysis of grain boundary impedances. Solid State Ionics 131, 117–127 (2000)

    Article  CAS  Google Scholar 

  41. F. Noll, W. Münch, I. Denk, J. Maier, SrTiO3 as a prototype of a mixed conductor conductivities, oxygen diffusion and boundary effects. Solid State Ionics 86–88(Part 2), 711–717 (1996)

    Article  Google Scholar 

  42. S. Rodewald, J. Fleig, J. Maier, Measurement of conductivity profiles in acceptor-doped strontium titanate. J. Eur. Ceram. Soc. 19, 797–801 (1999)

    Article  CAS  Google Scholar 

  43. S. Rodewald, J. Fleig, J. Maier, Microcontact impedance spectroscopy at single grain boundaries in Fe‐doped SrTiO3 polycrystals. J. Am. Ceram. Soc. 84, 521–530 (2001)

    Article  CAS  Google Scholar 

  44. T. Ishigaki, S. Yamauchi, K. Kishio, J. Mizusaki, K. Fueki, Diffusion of oxide ion vacancies in perovskite-type oxides. J. Solid State Chem. 73, 179–187 (1988)

    Article  CAS  Google Scholar 

  45. M. Kubicek, T.M. Huber, A. Welzl, A. Penn, G.M. Rupp, J. Bernardi, M. Stöger-Pollach, H. Hutter, J. Fleig, Electrochemical properties of La0.6Sr0.4CoO3-δ thin films investigated by complementary impedance spectroscopy and isotope exchange depth profiling. Solid State Ionics 256, 38–44 (2014)

    Article  CAS  Google Scholar 

  46. I. Denk, W. Muench, J. Maier, Partial conductivities in SrTiO3: bulk polarization experiments, oxygen concentration cell measurements, and defect-chemical modeling. J. Am. Ceram. Soc. 78, 3265–3272 (1995)

    Article  CAS  Google Scholar 

  47. R.-A. Eichel, Structural and dynamic properties of oxygen vacancies in perovskite oxides-analysis of defect chemistry by modern multi-frequency and pulsed EPR techniques. Phys. Chem. Chem. Phys. 13, 368–384 (2011)

    Article  CAS  Google Scholar 

  48. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)

    Article  CAS  Google Scholar 

  49. R. Muenstermann, R. Dittmann, K. Szot, S. Mi, C.-L. Jia, P. Meuffels, R. Waser, Realization of regular arrays of nanoscale resistive switching blocks in thin films of Nb-doped SrTiO3. Appl. Phys. Lett. 93, 023110 (2008)

    Article  CAS  Google Scholar 

  50. T. Menke, P. Meuffels, R. Dittmann, K. Szot, R. Waser, Separation of bulk and interface contributions to electroforming and resistive switching behavior of epitaxial Fe-doped SrTiO3. J. Appl. Phys. 105, 066104 (2009)

    Article  CAS  Google Scholar 

  51. F. Messerschmitt, M. Kubicek, S. Schweiger, J.L.M. Rupp, Memristor kinetics and diffusion characteristics for mixed anionic-electronic SrTiO3-δ bits: the memristor-based cottrell analysis connecting material to device performance. Adv. Funct. Mater. 24, 7448–7460 (2014)

    Article  CAS  Google Scholar 

  52. S. Rodewald, J. Fleig, J. Maier, The distribution of grain boundary resistivities in SrTiO3 polycrystals: a comparison between spatially resolved and macroscopic measurements. J. Eur. Ceram. Soc. 21, 1749–1752 (2001)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Klaudia Hradil and Werner Artner are gratefully acknowledged for XRD and RSM measurements. The authors gratefully acknowledged Johannes Bernardi for TEM measurements, Andreas Limbeck for ICP-MS measurements, and Gernot Friedbacher for AFM measurements. The authors are also grateful for the financial support by Austrian Science Fund (FWF) project: F4509-N16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kubicek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kubicek, M., Taibl, S., Navickas, E., Hutter, H., Fafilek, G., Fleig, J. (2022). Resistive States in Strontium Titanate Thin Films: Bias Effects and Mechanisms at High and Low Temperatures. In: Rupp, J., Ielmini, D., Valov, I. (eds) Resistive Switching: Oxide Materials, Mechanisms, Devices and Operations. Electronic Materials: Science & Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-42424-4_13

Download citation

Publish with us

Policies and ethics