Skip to main content
Log in

Chemical and phase compositions of silicon oxide films with nanocrystals prepared by carbon ion implantation

  • Low-Dimensional Systems
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The chemical and phase compositions of silicon oxide films with self-assembled nanoclusters prepared by ion implantation of carbon into SiO x (x < 2) suboxide films with subsequent annealing in a nitrogen atmosphere have been investigated using X-ray photoelectron spectroscopy in combination with depth profiling by ion sputtering. It has been found that the relative concentration of oxygen in the maximum of the distribution of implanted carbon atoms is decreased, whereas the relative concentration of silicon remains almost identical over the depth in the layer containing the implanted carbon. The in-depth distributions of carbon and silicon in different chemical states have been determined. In the regions adjacent to the layer with a maximum carbon content, the annealing results in the formation of silicon oxide layers, which are close in composition to SiO2 and contain silicon nanocrystals, whereas the implanted layer, in addition to the SiO2 phase, contains silicon oxide species Si2+ and Si3+ with stoichiometric formulas SiO and Si2O3, respectively. The film contains carbon in the form of SiC and elemental carbon phases. The lower limit of the average size of silicon nanoclusters has been estimated as ∼2 nm. The photoluminescence spectra of the films have been interpreted using the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Rebohle, T. Gebel, H. Frob, H. Reuther, and W. Skorupa, Appl. Surf. Sci. 184, 156 (2001).

    Article  ADS  Google Scholar 

  2. L. J. Mitchell, F. Naab, O. W. Holland, J. L. Duggan, and F. D. McDaniel, J. Non-Cryst. Solids 352, 2562 (2006).

    Article  ADS  Google Scholar 

  3. A. Pérez-Rodríguez, O. González-Varona, B. Garrido, P. Pellegrino, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, J. Appl. Phys. 94, 254 (2003).

    Article  ADS  Google Scholar 

  4. D. I. Tetelbaum, A. N. Mikhaylov, V. K. Vasiliev, A. I. Belov, A. I. Kovalev, D. L. Wainstein, Yu. A. Mendeleva, T. G. Finstad, S. Foss, Y. Golan, and A. Osherov, Surf. Coat. Technol. 203, 2658 (2009).

    Article  Google Scholar 

  5. A. I. Belov, A. N. Mikhaylov, D. E. Nikolitchev, A. V. Boryakov, A. P. Sidorin, A. P. Gratchev, A. V. Ershov, and D. I. Tetelbaum, Semiconductors 44(11), 1450 (2010).

    Article  ADS  Google Scholar 

  6. D. Wainstein, A. Kovalev, D. Tetelbaum, A. Mikhaylov, and A. Belov, Surf. Interface Anal. 40, 571 (2008).

    Article  Google Scholar 

  7. J. F. Ziegler, http://www.srim.org

  8. G. A. Kachurin, S. G. Yanovskaya, V. A. Volodin, V. G. Kesler, A. F. Leier, and M.-O. Ruault, Semiconductors 36(6), 647 (2002).

    Article  ADS  Google Scholar 

  9. K. Sato, T. Izumi, M. Iwase, Y. Show, H. Morisaki, T. Yaguchi, and T. Kamino, Appl. Surf. Sci. 216, 376 (2003).

    Article  ADS  Google Scholar 

  10. D. I. Tetelbaum, O. N. Gorshkov, A. P. Kasatkin, A. N. Mikhaylov, A. I. Belov, D. M. Gaponova, and S. V. Morozov, Phys. Solid State 47(1), 13 (2005).

    Article  ADS  Google Scholar 

  11. M. P. Seah, in Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, Ed. by D. Briggs and M. P. Seah (Wiley, New York, 1983; Mir, Moscow, 1987), p. 203.

    Google Scholar 

  12. Handbooks of Monochromatic XPS Spectra, Vol. 1: The Elements and Native Oxides, Ed. by B. V. Crist (XPS International LLC, Mountain View, California, United States, 1999).

    Google Scholar 

  13. Handbooks of Monochromatic XPS Spectra, Vol. 2: Commercially Pure Binary Oxides and a Few Common Carbonates and Hydroxides, Ed.by B. V. Crist (XPS International LLC, Mountain View, California, United States, 2005).

    Google Scholar 

  14. XPS/AES software. http://www.xpsdata.com/

  15. N. I. Fainer, M. L. Kosinova, and Yu. M. Rumyantsev, Ross. Khim. Zh. XLV, 101 (2001).

    Google Scholar 

  16. X. L. Wu, Y. Gu, S. J. Xiong, J. M. Zhu, G. S. Huang, X. M. Bao, and G. G. Siu, J. Appl. Phys. 94, 5247 (2003).

    Article  ADS  Google Scholar 

  17. M. Nakazawa, S. Kawase, and H. Sekiyama, J. Appl. Phys. 65, 4014 (1989).

    Article  ADS  Google Scholar 

  18. C. D. Wagner, A. V. Naumkin, A. K.-V. J. W. Allison, C. J. Powell, J. R. Rumble, Jr., NIST X-Ray Photoelectron Spectroscopy Database; http://srdata.nist.gov/xps.

  19. B. S. Bokshtein, S. Z. Bokshtein, and A. A. Zhukhovitskii, Thermodynamics and Kinetics of Diffusion in Solids (Metallurgiya, Moscow, 1974; Oxonian, New Delhi, 1985).

    Google Scholar 

  20. V. I. Vedeneev, L. V. Gurvich, V. N. Kondrat’ev, V. A. Medvedev, and E. L. Frankevich, Energies of Chemical Bonds. Ionization Potentials and Electron Affinities: A Handbook (Academy of Sciences of the USSR, Moscow, 1962) [in Russian].

    Google Scholar 

  21. D. A. Shirley, Phys. Rev. B: Solid State 5, 4709 (1972).

    Article  ADS  Google Scholar 

  22. B. Garrido Fernandez, M. López, C. García, A. érez-Rodríguez, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, J. Appl. Phys. 91, 798 (2002).

    Article  ADS  Google Scholar 

  23. J. Y. Fan, X. L. Wu, and P. K. Chu, Prog. Mater. Sci. 51, 983 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Nikolitchev.

Additional information

Original Russian Text © A.V. Boryakov, D.E. Nikolitchev, D.I. Tetelbaum, A.I. Belov, A.V. Ershov, A.N. Mikhaylov, 2012, published in Fizika Tverdogo Tela, 2012, Vol. 54, No. 2, pp. 347–359.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boryakov, A.V., Nikolitchev, D.E., Tetelbaum, D.I. et al. Chemical and phase compositions of silicon oxide films with nanocrystals prepared by carbon ion implantation. Phys. Solid State 54, 394–403 (2012). https://doi.org/10.1134/S1063783412020102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783412020102

Keywords

Navigation