Skip to main content
Log in

Structure and composition of silicon carbide films synthesized by ion implantation

  • Surface Physics and Thin Films
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The mathematical decomposition of the IR absorption spectrum obtained from a Si layer after the C+ ion implantation with an energy of 10 or 40 keV or from a homogeneous SiC0.7 film has demonstrated that fractions of weak elongated Si-C bonds in the amorphous phase, strong shortened Si-C bonds on the surface of small nanocrystals, and tetrahedral Si-C bonds in the crystalline phase (degree of crystallinity) after high-temperature annealing (1250–1400°C) of the layers are equal to 29/29/42, 22/7/71, and 21/31/48%, respectively. A system of SiC2.0, SiO2, SiC0.8, and SiC0.6 layers in the film on the Si substrate has been identified using X-ray reflectometry and the simulation with the Release software. The reflectometry data on fluctuations of the intensity of X-ray reflections in the region of the main maximum have been interpreted in terms of variations in the density over the depth of the layer with a Gaussian distribution of carbon atoms from 2.55 and 2.90 g/cm3 for the SiC0.25 and SiC0.65 layers, respectively, to 3.29 g/cm3 for the SiC1.36 layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Liao, S. L. Girshick, W. M. Mook, W. W. Gerberich, and M. R. Zachariah, Appl. Phys. Lett. 86, 171913 (2005).

    Article  ADS  Google Scholar 

  2. A. V. Afanas’ev, V. A. Il’in, A. V. Korlyakov, A. O. Lebedev, V. V. Luchinin, and Yu. M. Tairov, in Physics and Technology of Microand Nanosystems, Ed. by V. V. Luchinin and V.V. Malinovskii (Russkaya Kollektsiya, St. Petersburg, 2011), p. 50.

  3. K. Oguri and T. Sekigawa, US Patent No. 2004/0180242 A1 (2004).

  4. H. Yan, B. Wang, X. M. Song, L. W. Tan, S. J. Zhang, G. H. Chen, S. P. Wong, R. W. M. Kwok, and W. M. L. Leo, Diamond Related Mater. 9, 1795 (2000).

    Article  ADS  Google Scholar 

  5. D. Chen, S. P. Wong, Sh. Yang, and D. Mo, Thin Solid Films 426, 1 (2003).

    Article  ADS  Google Scholar 

  6. Yu Liangdeng, Saweat Intarasiri, Teerasak Kamwanna, and Somsorn Singkarat, in Ion Beam Applications in Surface and Bulk Modification of Insulators (International Atomic Energy Agency, Vienna, Austria, 2008), p. 63.

    Google Scholar 

  7. J. K. N. Lindner, Appl. Phys. A 77, 27 (2003).

    Article  ADS  Google Scholar 

  8. J. A. Borders, S. T. Picraux, and W. Beezhold, Appl. Phys. Lett. 18(11), 509 (1971).

    Article  ADS  Google Scholar 

  9. R. M. Bayazitov, I. B. Haibullin, R. I. Batalov, R. M. Nurutdinov, L. Kh. Antonova, V. P. Aksenov, and G. N. Mikhailova, Nucl. Instrum. Methods Phys. Res., Sect. B 206, 984 (2003).

    Article  ADS  Google Scholar 

  10. K. Kh. Nussupov and N. B. Beisenkhanov, in Silicon Carbide-Materials, Processing and Applications in Electronic Devices, Ed. by M. Mukherjee (InTech, Rijeka, Croatia, 2011), Chap. 4, p. 69.

  11. K. Kh. Nusupov, N. B. Beisenkhanov, I. V. Valitova, E. A. Dmitrieva, D. Zhumagaliuly, and E. A. Shilenko, Phys. Solid State 48(7), 1255 (2006).

    Article  ADS  Google Scholar 

  12. J. Zhao, D. S. Mao, Z. X. Lin, B. Y. Jiang, Y. H. Yu, X. H. Liu, H. Z. Wang, and G. O. Yang, Appl. Phys. Lett. 73(13), 1838 (1998).

    Article  ADS  Google Scholar 

  13. D. I. Tetelbaum, A. N. Mikhaylov, A. I. Belov, V. K. Vasiliev, A. I. Kovalev, D. L. Wainshtein, Y. Golan, and A. Osherov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 3(5), 702 (2009).

    Article  Google Scholar 

  14. L. Pavesi, Mater. Today 8(1), 18 (2005).

    Article  MathSciNet  Google Scholar 

  15. A. Perez-Rodriguez, O. Gonzalez-Varona, B. Garrido, P. Pellegrino, J. R. Morante, C. Bonafos, M. Carrada, and A. Claverie, J. Appl. Phys. 94(1), 254 (2003).

    Article  ADS  Google Scholar 

  16. O. Gonzalez-Varona, A. Perez-Rodriguez, B. Garrido, C. Bonafos, M. Lopez, J. R. Morante, J. Montserrat, and R. Rodrguez, Nucl. Instrum. Methods Phys. Res., Sect. B 161–163, 904 (2000).

    Article  Google Scholar 

  17. A. I. Belov, A. N. Mikhailov, D. E. Nikolichev, A. V. Boryakov, A. P. Sidorin, A. P. Grachev, A. V. Ershov, and D. I. Telebaum, Semiconductors 44(11), 1450 (2010).

    Article  ADS  Google Scholar 

  18. G. Conibeer, M. Green, R. Corkish, Y. Cho, E. Cho, C. Jiang, T. Fangsuwannarak, E. Pink, Y. Huang, T. Puzzer, T. Trupke, B. Richards, A. Shalav, and K. Lin, Thin Solid Films 511–512, 654 (2006).

    Article  Google Scholar 

  19. G. P. Yarovoi, N. V. Latukhina, A. S. Rogozhin, A. S. Gurtov, S. V. Ivkov, and S. I. Minenko, Izv. Samar. Nauchn. Tsentra, Ross. Akad. Nauk 14(1), 521 (2012).

    Google Scholar 

  20. T. Chen, Y. Huang, A. Dasgupta, M. Luysberg, L. Houben, D. Yang, R. Carius, and F. Finger, Sol. Energy Mater. Sol. Cells 98, 370 (2012).

    Article  Google Scholar 

  21. T. Chen, Y. Huang, H. Wang, D. Yang, A. Dasgupta, R. Carius, and F. Finger, Thin Solid Films 517(12), 3513 (2009).

    Article  ADS  Google Scholar 

  22. S. Ogawa, M. Okabe, Y. Ikeda, T. Itoh, N. Yoshida, and S. Nonomura, Thin Solid Films 516(5), 740 (2008).

    Article  ADS  Google Scholar 

  23. J. Ma, J. Ni, J. Zhang, Z. Huang, G. Hou, X. Chen, X. Zhang, X. Geng, and Y. Zhao, Sol. Energy Mater. Sol. Cells 114, 9 (2013).

    Article  Google Scholar 

  24. D. Pysch, M. Bivour, M. Hermle, and S. W. Glunz, Thin Solid Films 519(8), 2550 (2011).

    Article  ADS  Google Scholar 

  25. N. I. Klyui, V. G. Litovchenko, A. G. Rozhin, V. N. Dikusha, M. Kittler, and W. Seifert, Sol. Energy Mater. Sol. Cells 72(1–4), 597 (2002).

    Article  Google Scholar 

  26. E. K. Baranova, K. D. Demakov, K. V. Starinin, L. N. Strel’tsov, and I. B. Khaibullin, Dokl. Akad. Nauk SSSR 200, 869 (1971).

    Google Scholar 

  27. T. Kimura, Sh. Kagiyama, and Sh. Yugo, Thin Solid Films 122, 165 (1984).

    Article  ADS  Google Scholar 

  28. I. P. Akimchenko, K. V. Kisseleva, V. V. Krasnopevtsev, Yu. V. Milyutin, A. G. Touryanski, V. S. Vavilov, Radiat. Eff. 33, 75 (1977).

    Article  Google Scholar 

  29. K. Kh. Nusupov, Extended Abstract of Doctoral Dissertation (Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 1996).

    Google Scholar 

  30. I. P. Akimchenko, Kh. R. Kazdaev, I. A. Kamenskikh, and V. V. Krasnopevtsev, Sov. Phys. Semicond. 13(2), 219 (1979).

    Google Scholar 

  31. T. Kimura, Sh. Kagiyama, and Sh. Yugo, Thin Solid Films 81(4), 319 (1981).

    Article  ADS  Google Scholar 

  32. K. Srikanth, M. Chu, S. Ashok, N. Nguyen, and K. Vedam, Thin Solid Films 163, 323 (1988).

    Article  ADS  Google Scholar 

  33. N. N. Gerasimenko, O. N. Kuznetsov, L. V. Lezheiko, E. V. Lyubopytova, L. S. Smirnov, and F. L. Edel’man, Mikroelektronika 3(5), 467 (1974).

    Google Scholar 

  34. I. P. Akimchenko, K. V. Kisseleva, V. V. Krasnopevtsev, A. G. Touryanski, and V. S. Vavilov, Radiat. Eff. 48, 7 (1980).

    Article  Google Scholar 

  35. R. M. Bayazitov, I. B. Khaibullin, R. I. Batalov, and R. M. Nurutdinov, Tech. Phys. 48(6), 742 (2003).

    Article  Google Scholar 

  36. K. V. Vaidyanathan, J. Appl. Phys. 44(2), 583 (1973).

    Article  ADS  Google Scholar 

  37. M. J. Koyama, J. Appl. Phys. 51(6), 3202 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  38. M. Reeson, J. Stoemenos, and P. L. F. Hemment, Thin Solid Films 191, 147 (1990).

    Article  ADS  Google Scholar 

  39. K. Kh. Nussupov, V. O. Sigle, and N. B. Beisenkhanov, Nucl. Instrum. Methods Phys. Res., Sect. B 82, 69 (1993).

    Article  ADS  Google Scholar 

  40. P. Durupt, B. Canut, J. P. Gauthier, J. A. Roger, and J. Pivot, Mater. Res. Bull. 15, 1557 (1980).

    Article  Google Scholar 

  41. I. P. Akimchenko, Kh. R. Kazdaev, and V. V. Krasnopevtsev, Sov. Phys. Semicond. 11(10), 1149 (1977).

    Google Scholar 

  42. L. Calcagno, G. Compagnini, G. Foti, M. G. Grimaldi, and P. Musumeci, Nucl. Instrum. Methods Phys. Res., Sect. B 120(1), 121 (1996).

    Article  ADS  Google Scholar 

  43. W. Rothemund and C. R. Fritzsche, J. Electrochem. Soc. 121, 4, 586 (1974).

    Article  Google Scholar 

  44. A. G. Touryanski, A. V. Vinogradov, and I. V. Pirshin, US Patent No. 6 041 098 (2000).

  45. A. Tur’yanskii, N. Gerasimenko, I. Pirshin, and V. Senkov, Nanoindustriya 5, 40 (2009).

    Google Scholar 

  46. J. F. Gibbons, W. S. Johnson, and S. W. Mylroie, Projected Range Statistics: Semiconductors and Related Materials, 2nd ed. (Dowden, Hutchinson and Ross, Stroudsburg, 1975).

    Google Scholar 

  47. D. I. Brinkevich, N. V. Vabishchevich, and V. S. Prosolovich, Vestn. Belarus. Gos. Univ., Ser. 1: Fiz., Mat. Inform., No. 1, 41 (2010).

    Google Scholar 

  48. I. P. Lisovskyy, I. Z. Indutnyy, B. N. Gnennyy, P. M. Lytvyn, D. O. Mazunov, A. S. Oberemok, N. V. Sopinskyy, and P. E. Shepelyavyi, Semoconductors 37(1), 97 (2003).

    Article  ADS  Google Scholar 

  49. T. Kimura, Sh. Kagiyama, and Sh. Yugo, Thin Solid Films 94, 191 (1982).

    Article  ADS  Google Scholar 

  50. S. P. Wong, D. Chen, L. C. Ho, H. Yan, and R. W. M. Kwok, Nucl. Instrum. Methods Phys. Res., Sect. B 140(1–2), 70 (1998).

    Article  ADS  Google Scholar 

  51. B. L. Henke, E. M. Gullikson, and J. C. Davis, At. Data Nucl. Data Tabl. 54(2), 181 (1993). http://henke.lbl.gov/optical_constants/.

    Article  ADS  Google Scholar 

  52. D. Chen, W. Y. Cheung, and S. P. Wong, Nucl. Instrum. Methods Phys. Res., Sect. B 148(1–4), 589 (1999).

    Article  ADS  Google Scholar 

  53. J. K. N. Lindner, K. Volz, U. Preckwinkel, B. Gotz, A. Frohnwieser, B. Stritzker, and B. Rauschenbach, Mater. Chem. Phys. 46(2–3), 147 (1996).

    Article  Google Scholar 

  54. P. Martin, B. Daudin, M. Dupuy, A. Ermolieff, M. Olivier, A. M. Papon, and G. J. Rolland, J. Appl. Phys. 67(6), 2908 (1990).

    Article  ADS  Google Scholar 

  55. S. A. Aprelov, Extended Abstract of Candidate’s Dissertation (Moscow State Institute of Electronic Technology, Moscow, 2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. B. Beisenkhanov.

Additional information

Original Russian Text © K.Kh. Nussupov, N.B. Beisenkhanov, S.K. Zharikov, I.K. Beisembetov, B.K. Kenzhaliev, T.K. Akhmetov, B.Zh. Seitov, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 11, pp. 2231–2245.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nussupov, K.K., Beisenkhanov, N.B., Zharikov, S.K. et al. Structure and composition of silicon carbide films synthesized by ion implantation. Phys. Solid State 56, 2307–2321 (2014). https://doi.org/10.1134/S1063783414110237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414110237

Keywords

Navigation