Skip to main content
Log in

Computer simulation of the infrared spectra of endohedral metallofullerenes Li2C60 and Na2C60

  • Fullerenes and Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Using the Gaussian03 computer software, the infrared spectra of endohedral Li2C60 and Na2C60 are calculated by the Hartree-Fock method in the 3–21G basis set. The calculation is carried out for three cases: (i) metallofullerenes without a solvent, (ii) metallofullerenes in a toluene solution, and (iii) metallofullerenes in a tetrahydrofuran solution. The effect of a solvent on the energetic, electrical, and spectral characteristics of the metallofullerenes is studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Hebard, M. J. Rosseinsky, R. C. Haddon, D. W. Murphy, S. H. Glarum, T. T. M. Paltsra, A. P. Ramirez, and A. R. Kortan, Nature (London) 350, 660 (1991).

    Article  Google Scholar 

  2. Fullerenes, Ed. by L. N. Sidorov, M. A. Yurovskaya, A. Ya. Borshchevskioe, I. V. Trushkov, and I. N. Ioffe (Ékzamen, Moscow, 2005) [in Russian].

    Google Scholar 

  3. S. N Titova, G. A. Domrachev, S. Ya. Khorshev, A. M. Ob’edkov, L. V. Kalakutskaya, S. Yu. Ketkov, V. K. Cherkasov, B. S. Kaverin, K. B. Zhogova, M. A. Lopatin, V. L. Karnatsevich, and E. A. Gorina, Fiz. Tverd. Tela (St. Petersburg) 46(7), 1323 (2004) [Phys. Solid State 46 (7), 1365 (2004)].

    Google Scholar 

  4. S. Nagase, K. Kobayashi, T. J. Akasaka, and T. Wakahara, in Fullerenes: Chemistry, Physics, and Technology, Ed. by K. M. Kadish and R. S. Ruoff (Wiley, New York, 2000), p. 395.

    Google Scholar 

  5. S. A. Varganov, P. V. Avramov, and S. G. Ovchinnikov, Fiz. Tverd. Tela (St. Petersburg) 42(2), 378 (2000) [Phys. Solid State 42 (2), 388 (2000)].

    Google Scholar 

  6. P. V. Avramov, S. A. Varganov, and S. G. Ovchinnikov, Fiz. Tverd. Tela (St. Petersburg) 42(11), 2103 (2000) [Phys. Solid State 42 (11), 2168 (2000)].

    Google Scholar 

  7. A. A. Kuzubov, P. V. Avramov, S. G. Ovchinnikov, S. A. Varganov, and F. N. Tomilin, Fiz. Tverd. Tela (St. Petersburg) 43(9), 1721 (2001) [Phys. Solid State 43 (9), 1794 (2001)].

    Google Scholar 

  8. G. A. Domrachev, Yu. A. Shevelev, V. K. Cherkasov, E. G. Domracheva, and G. V. Markin, Fiz. Tverd. Tela (St. Petersburg) 44(3), 495 (2002) [Phys. Solid State 44 (3), 518 (2002)].

    Google Scholar 

  9. P. Giannozzil and W. Andreoni, Phys. Rev. Lett. 76(26), 4915 (1996).

    Article  ADS  Google Scholar 

  10. K. A. Wang, A. M. Rao, P. C. Eklund, M. S. Dresselhaus, and G. Dresselhaus, Phys. Rev. B: Condens. Matter 48, 11 375 (1993).

    Google Scholar 

  11. M. C. Martin, X. Du, J. Kwon, and L. Mihaly, Phys. Rev. B: Condens. Matter 50, 173 (1994).

    ADS  Google Scholar 

  12. Ho Choi Cheol, M. Kertesz, and L. Mihaly, J. Phys. Chem. A 104, 102 (2000).

    Article  Google Scholar 

  13. G. Cardini, R. Bini, P. R. Salvi, V. Schettino, M. L. Klein, R. M. Strongin, L. Brard, and A. B. Smith, J. Phys. Chem. 98, 9966 (1994).

    Article  Google Scholar 

  14. P. C. Eklund, P. Zhou, K.-A. Wang, G. Dresselhaus, and M. S. Dresselhaus, J. Phys. Chem. Solids 53, 1391 (1992).

    Article  ADS  Google Scholar 

  15. P. Zhou, K. A. Wang, Y. Wang, P. C. Eklund, G. Dresselhaus, and R. A. Jishi, Phys. Rev. B: Condens. Matter 46, 2595 (1992).

    ADS  Google Scholar 

  16. T. Pichler, R. Winkler, and H. Kuzmany, Phys. Rev. B: Condens. Matter 49, 15 879 (1994).

    Google Scholar 

  17. H. Kuzmany, R. Winkler, and T. Pichler, J. Phys.: Condens. Matter 7, 6601 (1995).

    Article  ADS  Google Scholar 

  18. M. C. Martin, D. Koller, A. Rosenberg, and C. Kendziora, Phys. Rev. B: Condens. Matter 51, 3210 (1995).

    ADS  Google Scholar 

  19. V. C. Long, J. L. Musfeldt, K. Kamaras, A. Schilder, and W. Schutz, Phys. Rev. B: Condens. Matter 58, 14338 (1998).

    Google Scholar 

  20. C. Coulombeau, H. Jobic, P. Bernier, C. Fabre, D. Schütz, and A. Rassat, J. Phys. Chem. 96, 22 (1992).

    Article  Google Scholar 

  21. G. Gensterblum, J. J. Pireaus, P. A. Thiry, R. Caudono, J. P. Vigneron, Ph. Lambin, A. A. Lucas, and W. Krätschmer, Phys. Rev. Lett. 67, 2171 (1991).

    Article  ADS  Google Scholar 

  22. K. Prassides, T. J. S. Dennis, J. P. Hare, J. Tomkinson, H. W. Kroto, R. Taylor, and D. R. M. Walton, Chem. Phys. Lett. 187, 455 (1991).

    Article  ADS  Google Scholar 

  23. D. A. Neumann, J. R. D. Copely, W. A. Kanntakahara, J. J. Rush, R. L. Cappelletti, N. Coustel, J. E. Fisher, J. P. McCauley, A. B. Smith, K. M. Kreegan, and D. M. Cox, J. Chem. Phys. 96, 8631 (1992).

    Article  ADS  Google Scholar 

  24. M. C. Martin, J. Fabian, J. Gidard, P. Bernier, J. M. Lambert, and L. Mihaly, Phys. Rev. B: Condens. Matter 51, 2894 (1995).

    ADS  Google Scholar 

  25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. A. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian 03: Software Package for Calculating Molecular Electronic Structure and Properties, Revision C.2 (Gaussian, Pittsburgh, PA, United States, 2003).

    Google Scholar 

  26. J. B. Foresman, T. A. Keith, K. B. Wiberg, J. Snoonian, and M. J. Frisch, J. Phys. Chem. 100, 16 098 (1996).

    Google Scholar 

  27. J. B. Foresman and E. Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian, Pittsburgh, PA, United States, 1995).

    Google Scholar 

  28. K.-P. Bohnen, R. Heid, K.-M. Ho, and C. T. Chan, Phys. Rev. B: Condens. Matter 51, 5805 (1995).

    ADS  Google Scholar 

  29. M. A. El’yashevich, Atomic and Molecular Spectroscopy (GIFML, Moscow, 1962) [in Russian].

    Google Scholar 

  30. O. A. Osipov, V. I. Minkin, and A. D. Garnovskioe, A Handbook on Dipole Moments (Vysshaya Shkola, Moscow, 1971) [in Russian].

    Google Scholar 

  31. V. A. Davydov, L. S. Kashevarova, A. V. Rakhmanina, V. M. Senyavin, V. Agafonov, R. Ceolin, and H. Szwarc, Pis’ma Zh. Éksp. Teor. Fiz. 68(12), 881 (1998) [JETP Lett. 68 (12), 928 (1998)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Butyrskaya.

Additional information

Original Russian Text © E.V. Butyrskaya, S.A. Zapryagaev, 2009, published in Fizika Tverdogo Tela, 2009, Vol. 51, No. 3, pp. 613–619.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butyrskaya, E.V., Zapryagaev, S.A. Computer simulation of the infrared spectra of endohedral metallofullerenes Li2C60 and Na2C60 . Phys. Solid State 51, 649–656 (2009). https://doi.org/10.1134/S1063783409030354

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783409030354

PACS numbers

Navigation