Skip to main content

Advertisement

Log in

Periodic DFT study of structural transformations of cocrystal CL-20/MMI under high pressure

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Context

The crystal and molecular structure, electronic properties, optical parameters, and elastic properties of a 1:2 hexanitrohexaazaisowurtzitane (CL-20)/2-mercapto-1-methylimidazole (MMI) cocrystal under 0 ~ 100 GPa hydrostatic pressure were calculated. The results show that the cocrystal CL-20/MMI undergoes three structural transitions at 72 GPa, 95 GPa, and 97 GPa, respectively, and the structural transition occurs in the part of the MMI compound. Structural mutations formed new bonds S1-S2, C2-C7, and N1C5 at 72GPa, 95 GPa, and 97 GPa, respectively. Similarly, the formation of new bonds is confirmed on the basis of an analysis of the changes in lattice constants, cell volumes, and partial densities of states (PDOS) for S1, S2, C2, C7, N1, and C3 at the corresponding pressures. The optical parameters show that the pressure makes the peaks of various optical parameters of CL-20/MMI larger, and the optical activity is enhanced. The optical parameters also confirm the structural mutation of CL-20/MMI under the corresponding pressure.

Method

CL-20/MMI was calculated by using the first-principles norm-conservative pseudopotential based on density functional theory (DFT) in the CASTEP software package. For the optimization results, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method is selected to optimize the geometry of the cocrystal in the range of 0–100 GPa. GGA/PBE (Perdew–Burke–Ernzerhof) was selected to relax the cocrystal CL-20/MMI fully without constraints at atmospheric pressure. The sampling scheme in the Brillouin zone [10] is the Monkhorst–Pack scheme, and the number of k-point grids was 2 × 2 × 2. By contrast, this study will use the LDA method to calculate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Liu G, Li H, Gou R et al (2018) Packing structures of CL-20-based cocrystals[J]. Cryst Growth Des 18(11):7065–7078

    Article  CAS  Google Scholar 

  2. Liu YJ, Lv P, Sun C et al (2019) Syntheses, crystal structures, and properties of two novel CL-20-based cocrystals[J]. Z Anorg Allg Chem 645(8):656–662

    Article  CAS  Google Scholar 

  3. Zhu S, Gan Q, Cheng N et al (2020) Exploring the effects of solvents on an organic explosive: insights from the electron structure, electrostatic potential, and conformational transformations of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane[J]. Int J Quantum Chem 120(12):e26202

    Article  CAS  Google Scholar 

  4. Hai-jian LI, Chao C, Zhe Z et al (2022) Preparation and thermal decomposition of CL-20-based cocrystals using resonant acoustic mixing[J]. Chinese J Explos Propellants 45(6):848–855. https://doi.org/10.14077/j.issn.1007-7812.202209001

  5. Xue ZH, Huang B, Li H et al (2020) Nitramine-based energetic cocrystals with improved stability and controlled reactivity[J]. Cryst Growth Des 20(12):8124–8147

    Article  CAS  Google Scholar 

  6. Ma P, Pan Y, Jiang J et al (2018) Molecular dynamic simulation and density functional theory insight into the nitrogen rich explosive 1, 5-diaminotetrazole (DAT)[J]. Procedia England 211:546–554

    Article  CAS  Google Scholar 

  7. Sultan M, Wu J, Haq IU et al (2022) Recent progress on synthesis, characterization, and performance of energetic cocrystals: a review[J]. Molecules 27(15):4775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clark S J, Segall M D, Pickard CJ et al (2005) First principles methods using CASTEP[J]. Zeitschrift für kristallographie-crystalline Materials, 220(5–6):567–570

  9. Segall MD, Lindan PJD, Probert MJ et al (2002) First-principles simulation: ideas, illustrations and the CASTEP code[J]. Phys 14(11):2717–2744

    CAS  Google Scholar 

  10. Chadi DJ (1977) Special points for Brillouin-zone integrations[J]. Phys Rev B 16(4):1746

    Article  Google Scholar 

  11. Sheldrick GM (2015) Crystal structure refinement with SHELXL[J]. Acta Crystallogr Section C: Struct Chem 71(1):3–8

    Google Scholar 

  12. Xiang D, Ji G, Zhu W (2019) Structural and vibrational properties of crystalline b-octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine at high temperatures: ab initio molecular dynamics studies[J]. Chemistry 4(14):4244–4250

    CAS  Google Scholar 

  13. Zhu W, Zhang X, Zhu W et al (2008) Density functional theory studies of hydro-static compression of crystalline ammonium perchlorate[J]. Phys Chem Chem Phys 10(48):7318–7323

    Article  CAS  PubMed  Google Scholar 

  14. Fuchs F, Furthmüller J, Bechstedt F, Shishkin M, Kresse G (2007) Quasiparticle band structure based on a generalized Kohn-Sham scheme[J]. Phys Rev B 76(11):115109

    Article  Google Scholar 

  15. Lejaeghere K, Van Speybroeck V, Van Oost G, Cottenier S (2014) Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals[J]. Crit Rev Solid State Mater Sci 39(1):1–24

    Article  CAS  Google Scholar 

  16. Yalameha S, Nourbakhsh Z (2020) Coexistence of type-I and critical-type nodal line states in intermetallic compounds ScM (M=Cu, Ag, Au)[J]. J Phys: Condens Matter 32(29):295502

    CAS  PubMed  Google Scholar 

  17. Zhong M, Qin H, Liu Q J et al (2019) Structures, elasticity, and sensitivity characteristics of ɛ‐CL‐20 under high pressure from first‐principles calculations[J]. Physica Status Solidi (b), 256(5):1800440

  18. Budzevich MM, Landerville AC, Conroy MW et al (2010) Hydrostatic and uniaxial compression studies of 1, 3, 5-triamino-2, 4, 6-trinitrobenzene using density functional theory with van der Waals correction[J]. J Appl Phys 107(11):113524

    Article  Google Scholar 

  19. Zhu WH, Xiao JJ, Ji GF, Zhao F, Xiao HM (2007) First-principles study of the four polymorphs of crystalline octahydro-1,3,5,7-tetranitro- 1,3,5,7-tetrazocine. J Phys Chem B 111:12715–12722

    Article  CAS  PubMed  Google Scholar 

  20. Kuklja MM, Stefanovich EV, Kunz AB (2000) An excitonic mechanism of detonation initiation in explosives[J]. Chem Phys 112:3417–3423

    CAS  Google Scholar 

  21. Chen J et al (2023) Molecular design and theoretical study of oxadiazole-bifurazan derivatives[J]. J Mol Model 29(6):1–14

    Article  CAS  Google Scholar 

  22. Zhu W, Xiao J, Ji G et al (2007) First-principles study of the four polymorphs of crystalline octahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine[J]. J Phys Chem B 111(44):12715–12722

    Article  CAS  PubMed  Google Scholar 

  23. Zhu W, Xiao H (2010) First-principles band gap criterion for impact sensitivity of energetic crystals: a review[J]. Struct Chem 21:657–665

    Article  CAS  Google Scholar 

  24. Xu XJ, Zhu WH, Xiao HM (2007) DFT studies on the four polymorphs of crystalline CL-20 and the influences of hydrostatic pressure on ε-CL-20 crystal[J]. J Phys Chem B 111(8):2090–2097

    Article  CAS  PubMed  Google Scholar 

  25. Maurya V, Sharma G, Joshi KB (2021) First-principles characterisation of structural and electronic properties of some RuO2 crystals[J]. Phys Scr 96(5):055807

    Article  Google Scholar 

  26. Liu QJ, Liu ZT, Feng LP et al (2010) First-principles study of structural, elastic, electronic and optical properties of rutile GeO2 and α-quartz GeO2[J]. Solid State Sci 12(10):1748–1755

    Article  CAS  Google Scholar 

  27. Saha S, Sinha TP, Mookerjee A (2010) Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO 3[J]. Phys Rev B 62(13):8828

    Article  Google Scholar 

  28. Hayatullah MG, Muhammad S et al (2013) Physical properties of CsSnM_3 (M= Cl, Br, I): a first principle study[J]. Acta Phys Pol, A 124(1):102–107

    Article  CAS  Google Scholar 

  29. Subhan F, Azam S, Khan G et al (2019) Elastic and optoelectronic properties of CaTa2O6 compounds: cubic and orthorhombic phases[J]. J Alloy Compd 785:232–239

    Article  CAS  Google Scholar 

  30. Ali MA, Hossain MM, Islam A et al (2021) Ternary boride Hf3PB4: insights into the physical properties of the hardest possible boride MAX phase[J]. J Alloy Compd 857:158264

    Article  CAS  Google Scholar 

  31. Mouhat F, Coudert FX (2014) Necessary and sufficient elastic stability conditions in various crystal systems[J]. Phys Rev B 90(22):224104

    Article  Google Scholar 

  32. Hadi MA, Monira U, Chroneos A et al (2019) Phase stability and physical properties of (Zr1-xNbx) 2AlC MAX phases[J]. J Phys Chem Solids 132:38–47

    Article  CAS  Google Scholar 

  33. Day GM, Price SL, Leslie M (2001) Elastic constant calculations for molecular organic crystals[J]. Cryst Growth Des 1(1):13–27

    Article  CAS  Google Scholar 

  34. Hill R (1952) The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society. Section A, 65(5):349

  35. Pugh SFXCII (1954) Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. London, Edinburgh, Dublin Philos Mag J Sci 45(367):823–843

    Article  CAS  Google Scholar 

  36. Seddik T, Semari F, Khenata R et al (2010) High pressure phase transition and elastic properties of Lutetium chalcogenide[J]. Physica B 405(1):394–399

    Article  CAS  Google Scholar 

  37. Pettifor DG (1992) Theoretical predictions of structure and related properties of intermetallics[J]. Mater Sci Technol 8(4):345–349

    Article  CAS  Google Scholar 

  38. Finnis MW, Sinclair JE (1984) A simple empirical N-body potential for transition metals[J]. Philos Mag A 50(1):45–55

    Article  CAS  Google Scholar 

  39. Naher MI, Naqib SH (2020) Structural, elastic, electronic, bonding, and optical properties of topological CaSn3 semimetal[J]. J Alloy Compd 829:154509

    Article  CAS  Google Scholar 

  40. Xu J et al (2023) Theoretical study into effects of different substituents on the structure and properties of Keto-RDX compounds[J]. Comput Theor Chem 1224:114111

    Article  CAS  Google Scholar 

  41. Mahamudujjaman M, Afzal M A, Islam RS et al (2022) First-principles insights into mechanical, optoelectronic, and thermo-physical properties of transition metal dichalcogenides ZrX2 (X= S, Se, and Te)[J]. AIP Adv 12:025011. https://doi.org/10.1063/5.0073631

  42. Xiao T et al (2023) Theoretical insight into different energetic groups on the performance of energetic materials 2, 5, 7, 9-tetranitro-2, 5, 7, 9-tetraazabicyclo [4, 3, 0] nonane-8-one[J]. J Mol Model 29(8):231

    Article  CAS  PubMed  Google Scholar 

  43. Zhao M et al (2022) Structural transformation of methyl urotropine perchlorate under high pressure[J]. J Mol Model 28(9):251–251

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are so grateful to the High-Performance Computing Center of Nanjing Tech University for doing the numerical calculations in this paper on its x-Flex enterprise blade cluster system.

Funding

This study was supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Peng Ma and Jiani Xu; methodology: Jiani Xu; formal analysis and investigation: Jiani Xu, Tingting Xiao, and Jun Chen; writing—original draft preparation: Jiani Xu, Mengjie Bo, and Zhihui Gu; writing—review and editing: Jiani Xu, Peng Ma, and Zikai Gao; funding acquisition: Peng Ma and Congming Ma; resources: Peng Ma and Congming Ma; supervision: Peng Ma and Congming Ma.

Corresponding author

Correspondence to Peng Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, J., Xiao, T., Chen, J. et al. Periodic DFT study of structural transformations of cocrystal CL-20/MMI under high pressure. J Mol Model 30, 124 (2024). https://doi.org/10.1007/s00894-024-05918-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-024-05918-z

Keywords

Navigation