Skip to main content
Log in

Theoretical study of the dependences of the young’s and torsion moduli of thin single-layer carbon zigzag and armchair nanotubes on the geometric parameters

  • Fullerenes and Atomic Clusters
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The Young’s and torsion moduli of single-layer carbon (m, 0) and (m, m) nanotubes are studied. It is demonstrated that both moduli depend on the chirality, diameter, and length of the nanotube. It is found for the first time that the torsion modulus increases with the nanotube diameter and diminishes with an increase in its length. By considering nanotubes with various values of the diameter-to-length ratio, it is shown that the Young’s and torsion moduli of the nanotubes saturate at a diameter-to-length ratio of ∼0.3. The values of the torsion modulus as calculated from the Young’s modulus we obtained and from the deformation energy do not coincide, which can be attributed to the effect of dangling bonds at the open ends of the nanotubes. Energy calculations are performed using the Goodwin modification of the semiempirical Harrison tight-binding method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Treacy, T. W. Ebbsen, and J. M. Gibson, Nature (London) 381, 678 (1996).

    Article  ADS  Google Scholar 

  2. A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M. M. J. Treacy, Phys. Rev. B: Condens. Matter 58(20), 14013 (1998).

    Google Scholar 

  3. E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science (Washington), 277(5334), 1971 (1997).

    Article  Google Scholar 

  4. J.-P. Salvetat, G. A. D. Briggs, J.-M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stöckli, N. A. Burnham, and L. Forró, Phys. Rev. Lett. 82(5), 944 (1999).

    Article  ADS  Google Scholar 

  5. Zhou Xin, Zhou Jianjun, and Ou-Yang Zhong-can, Phys. Rev. B: Condens. Matter 62(20), 13692 (2000).

  6. J. P. Lu, Phys. Rev. Lett. 79(7), 1297 (1997).

    Article  ADS  Google Scholar 

  7. K. M. Liew, X. Q. He, and C. H. Wong, Acta Mater. 52(17), 2521 (2004).

    Article  Google Scholar 

  8. Marc Dequesnes, S. V. Rotkin, and N. R. Aluru, Nanotechnology 13, 120 (2002).

    Article  ADS  Google Scholar 

  9. Lianxi Shen and Jackie Li, Phys. Rev. B: Condens. Matter 69, 045414 (2004).

    Google Scholar 

  10. Rodney S. Ruoff, Dong Qian, and Wing Kam Liu, C. R. Phys. 4, 993 (2003).

    Article  Google Scholar 

  11. C. F. Cornwell and L. T. Wille, Solid State Commun. 101, 555 (1997).

    Article  Google Scholar 

  12. B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett. 76(14), 2511 (1996).

    Article  ADS  Google Scholar 

  13. E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Phys. Rev. Lett. 80(20), 4502 (1998).

    Article  ADS  Google Scholar 

  14. Tobias Hertel, Robert E. Walkup, and Phedon Avouris, Phys. Rev. B: Condens. Matter 58(20), 13870 (1998).

  15. N. M. Harik, Comput. Mater. Sci. 24, 328 (2002).

    Article  Google Scholar 

  16. O. E. Glukhova and A. I. Zhbanov, Fiz. Tverd. Tela (St. Petersburg) 45(1), 180 (2003) [Phys. Solid State 45 (1), 189 (2003)].

    Google Scholar 

  17. O. E. Glukhova, A. I. Zhbanov, and A. G. Rezkov, Fiz. Tverd. Tela (St. Petersburg) 47(2), 376 (2005) [Phys. Solid State 47 (2), 390 (2005)].

    Google Scholar 

  18. S. Han and J. Ihm, Phys. Rev. B: Condens. Matter 61(15), 9986 (2000).

    ADS  Google Scholar 

  19. L. Goodwin, J. Phys.: Condens. Matter. 3, 3869 (1991).

    Article  ADS  Google Scholar 

  20. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Pergamon, Oxford, 1986; Nauka, Moscow, 2001).

    Google Scholar 

  21. C. Q. Ru, Phys. Rev. B: Condens. Matter 62(15), 9973 (2000).

    ADS  Google Scholar 

  22. H. Dai, J. H. Hafner, A. G. Rinzler, D. T. Colbert, and R. E. Smalley, Nature (London) 384, 147 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.E. Glukhova, O.A. Terent’ev, 2006, published in Fizika Tverdogo Tela, 2006, Vol. 48, No. 7, pp. 1329–1335.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glukhova, O.E., Terent’ev, O.A. Theoretical study of the dependences of the young’s and torsion moduli of thin single-layer carbon zigzag and armchair nanotubes on the geometric parameters. Phys. Solid State 48, 1411–1417 (2006). https://doi.org/10.1134/S1063783406070304

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783406070304

PACS numbers

Navigation