Skip to main content
Log in

Effect of Absorber Layer Thickness on the Performance of Bismuth-Based Perovskite Solar Cells

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Theoretical study of methyl-ammonium bismuth halide perovskite solar cells, (CH3NH3)3Bi2I9, was carried out using a one-dimensional Solar Cell Capacitance Simulator (SCAPS-1D) software. The performance of the tested device architectures largely depends on the thickness of the absorbing layer, with the combination of electron transport, and hole transport layers. Thus, the bismuth perovskite absorber layer was optimized by varying the thickness and also, the thicknesses of the different charge-transport materials such as Spiro-OmeTAD, copper(I) oxide (Cu2O), and copper(I) iodide (CuI) as hole transport layer (HTL), and phenyl-C61-butyric acid methyl ester (PCBM), poly(3-hexylthiophene-2,5-diyl) (P3HT), zinc oxide, and titanium dioxide as electron transport layer (ETL). The best performance in terms of the power conversion efficiency (PCE) was recorded for the device with Cu2O as the HTL and ZnO as the ETL with the absorber layer thickness of 200 nm. The working temperature of the device was varied from 295 to 320 K and the effects of temperature on various device architectures were investigated. Results obtained indication that the efficiency of the bismuth perovskite solar cells can be improved by optimizing the thickness of the absorber layer and utilizing an appropriate combination of HTLs and ETLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. C. Zuo, H. J. Bolink, H. Han, J. Huang, and D. Cahen, Adv. Sci. 3, 1500324 (2016).

    Article  Google Scholar 

  2. A. Kulkarni, T. Singh, M. Ikegami, and T. Miyasaka, RSC Adv. 7, 9456 (2017).

  3. N. Kour and R. Mehra, Int. Res. J. Eng. Technol. 4, 1284 (2017).

    Google Scholar 

  4. P. C. Harikesh, H. K. Mulmudi, B. Ghosh, T. W. Goh, Y. T. Teng, K. Thirumal, M. Lockrey, K. Weber, T. M. Koh, S. Li, S. Mhaisalkar, and N. Mathews, Chem. Mater. 28, 7496 (2016).

    Article  Google Scholar 

  5. R. L. Z. Hoye, R. E. Brandt, A. Osherov, V. Stevanovic, S. D. Stranks, M. W. B. Wilson, H. Kim, A. J. Akey, J. D. Perkins, R. C. Kurchin, J. R. Poindexter, E. N. Wang, M. G. Bawendi, V. Bulovic, and T. Buonassisi, Chem. Eur. J. 22, 2605 (2016).

    Article  Google Scholar 

  6. N. Park, Mater. Today 18, 65 (2015).

    Article  Google Scholar 

  7. N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz, and H. J. Snaith, Energy Environ. Sci. 7, 3061 (2014).

    Article  Google Scholar 

  8. M. Lyu, J.-H. Yun, M. Cai, Y. Jiao, P. V. Bernhardt, M. Zhang, Q. Wang, A. Du, H. Wang, G. Liu, and L. Wang, Nano Res. 9, 692 (2016).

    Article  Google Scholar 

  9. C. C. Stoumpos, L. Frazer, D. J. Clark, Y. S. Kim, S. H. Rhim, A. J. Freeman, J. B. Ketterson, J. I. Jang, and M. G. Kanatzidis, J. Am. Chem. Soc. 137, 6804 (2015).

    Article  Google Scholar 

  10. W. Ke and M. G. Kanatzidis, Nat. Commun. 10, 965 (2019).

    Article  ADS  Google Scholar 

  11. M. Chen, M.-G. Ju, H. F. Garces, A. D. Carl, L. K. Ono, Z. Hawash, Y. Zhang, T. Shen, Y. Qi, R. L. Grimm, D. Pacifici, X. C. Zeng, Y. Zhou, and N. P. Padture, Nat. Commun. 10, 16 (2019).

    Article  ADS  Google Scholar 

  12. J. K. Pious, M. L. Lekshmi, C. Muthu, R. B. Rakhi, and V. C. Nair, ACS Omega 2, 5798 (2017).

    Article  Google Scholar 

  13. B. Park, B. Philippe, X. Zhang, H. Rensmo, G. Boschloo, and E. M. J. Johansson, Adv. Mater. 27, 6806 (2015).

    Article  Google Scholar 

  14. S. Sanders, D. Stümmler, P. Pfeiffer, N. Ackermann, F. Schimkat, G. Simkus, M. Heuken, P. K. Baumann, A. Vescan, and H. Kalisch, Phys. Status Solidi A 215, 1800409 (2018).

    Article  ADS  Google Scholar 

  15. H. Wang, J. Tian, K. Jiang, Y. Zhang, H. Fan, J. Huang, L.-M. Yang, B. Guan, and Y. Song, RSC Adv. 7, 43826 (2017).

  16. S. Ameen, M. S. Akhtar, H. Shin, and M. K. Nazeeruddin, Adv. Inorg. Chem. 72, 185 (2018).

    Article  Google Scholar 

  17. G. A. Casas, M. A. Cappelletti, A. P. Cédola, B. M. Soucase, and E. L. P. Blancá, Superlatt. Microstruct. 107, 136 (2017).

    Article  ADS  Google Scholar 

  18. B. M. Soucase, I. G. Pradas, and K. R. Adhikari, in Perovskite Materials: Synthesis, Characterisation, Properties, and Applications (InTech, Rijeka, Croatia, 2016), p. 445.

  19. U. Mandadapu, V. Vedanayakam, K. Thyagarajan, M. R. Reddy, and B. J. Babu, Int. J. Renewable Energy Res. 7, 1603 (2017).

    Google Scholar 

  20. M. Burgelman, K. Decock, A. Niemegeers, J. Verschraegen, and S. Degrave, SCAPS Manual 18, 129 (2020).

    Google Scholar 

  21. F. A. Jhuma, M. Z. Shaily, and M. J. Rashid, Mater. Renewable Sustainabe Energy 8, 6 (2019).

    Article  Google Scholar 

  22. U. Mandadapu, V. Vedanayakam, K. Thyagarajan, and B. J. Babu, Int. J. Simul. Process. Model. 13, 221 (2018).

    Article  Google Scholar 

  23. S. Bansal and P. Aryal, in Proceedings of the IEEE 43rd Photovoltaic Specialists Conference (PVSC) (2016), p. 0747.

  24. F. Sadeghia and M. Neghabi, J. Solar Energy Res. 2, 315 (2017).

    Google Scholar 

  25. E. Karimi and M. M. B. Ghorashi, J. Nanophoton. 11, 032510 (2017).

  26. H. Peng, Z. Su, Z. Zheng, H. Lan, J. Luo, P. Fan, and G. Liang, Materials 12, 1237 (2019).

    Article  ADS  Google Scholar 

  27. F. Hossain, M. Faisal, and H. Okada, in Proceedings of the 2nd International Conference on Electrical, Computer and Telecommunication Engineering (ICECTE), Rajshahi (2016), p. 1.

  28. H. Abdulsalam, G. Babaji, and H. T. Abba, J. Found. Appl. Phys. 5, 141 (2018).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge Marc Burgelman and his team at the University of Gent for access to the SCAPS-1D simulation software.

Funding

This work has been supported by the Pan African Materials Institute (AUST/PAMI/2015 5415-NG) hosted at the African University of Science and Technology under the World Bank African Centers of Excellence Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bello.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obi, U.C., Sanni, D.M. & Bello, A. Effect of Absorber Layer Thickness on the Performance of Bismuth-Based Perovskite Solar Cells. Semiconductors 55, 922–927 (2021). https://doi.org/10.1134/S1063782621040114

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621040114

Keywords:

Navigation