Skip to main content
Log in

Effects of electron transport layer type on the performance of Pb-free Cs2AgBiBr6 double perovskites: a SCAPS-1D solar simulator–based study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Recently, due to the superior stability and lower risk of toxicity, the development of Pb-free halide double perovskite materials has revived excellent interest. In this work, Pb-free perovskite solar cells (PSCs) with ITO/ETL/Cs2AgBiBr6/Cu2O/Au multilayer structures with Cs2AgBiBr6 double perovskite as the solar light absorber layer, some electron transport layers (ETLs) and Cu2O as a hole transport layer have been introduced. Then, the effects of various thicknesses of the absorber layer and also ETL materials, like ZnO, C60, CdS, SnO2, phenyl-C61-butyric acid methyl ester (PCBM), and TiO2, on the device performance (including photoelectronic conversion efficiency (PCE), fill factor (FF%), short circuit current density (Jsc), and open-circuit voltage (VOC)) were examined with the help of a solar cell simulator (SCAPS-1D). It is noteworthy that, in the case of all ETL materials, the optimal thickness of the absorber layer was determined to be 400 nm. Then, the maximum PCE values of 20.08%, 17.63%, 14.07%, 12.11%, 14.94%, and 18.83% were obtained for the solar cells containing ZnO, C60, CdS, SnO2, PCBM, and TiO2 as the ETL, respectively. These results show that designing/developing Pb-free halide double perovskite devices having comparable PCEs with the Pb-based PSCs is feasible, provided that proper/compatible materials will be used in the multilayer structure of the next generations of solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

There is no data availability.

References

  • Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 113:20214–20220

    Article  CAS  Google Scholar 

  • Akhavan O, Tohidi H, Moshfegh AZ (2009) Synthesis and electrochromic study of sol–gel cuprous oxide nanoparticles accumulated on silica thin film. Thin Solid Films 517:6700–6706

    Article  CAS  Google Scholar 

  • Aseena S, Abraham N, Babu VS (2019) A Novel Perovskite Solar Cell with ZnO-Cu 2 O as Electron Transport Material-Hole Transport Material. In: 2019 TEQIP III Sponsored International Conference on Microwave Integrated Circuits, Photonics and Wireless Networks (IMICPW). IEEE, pp 131–135

  • Akin S, Altintas Y, Mutlugun E, Sonmezoglu S (2019) Cesiumlead based inorganic perovskite quantum-dots as interfacial layer for highly stable perovskite solar cells with exceeding 21% efficiency. Nano Energy 60:557–566

    Article  CAS  Google Scholar 

  • Burgelman M, Nollet P, Degrave S (2000) Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361:527–532

    Article  Google Scholar 

  • Burgelman M, Verschraegen J, Degrave S, Nollet P (2004) Modeling thin-film PV devices. Prog Photovolt Res Appl 12:143–153

    Article  CAS  Google Scholar 

  • Chini MK, Srinivasan SG, Tailor NK et al (2020) Lead-free, stable mixed halide double perovskites Cs2AgBiBr6 and Cs2AgBiBr6− xClx–A detailed theoretical and experimental study. Chem Phys 529:110547

    Article  Google Scholar 

  • Culu A, Kaya IC, Sonmezoglu S (2022) Spray-pyrolyzed tantalium-doped TiO2 compact electron transport layer for UV-photostable planar perovskite solar cells exceeding 20% efficiency. ACS Appl Energy Mater 5:3454–3462

    Article  CAS  Google Scholar 

  • Ding G, Zheng Y, Xiao X et al (2022) Sustainable development of perovskite solar cells: keeping a balance between toxicity and efficiency. J Mater Chem A 10:8159–8171

    Article  CAS  Google Scholar 

  • Dunlap-Shohl WA, Younts R, Gautam B et al (2016) Effects of Cd diffusion and doping in high-performance perovskite solar cells using CdS as electron transport layer. J Phys Chem C 120:16437–16445

    Article  CAS  Google Scholar 

  • Ebrahimi M, Kermanpur A, Atapour M et al (2020) Performance enhancement of mesoscopic perovskite solar cells with GQDs-doped TiO2 electron transport layer. Sol Energy Mater Sol Cells 208:110407

    Article  CAS  Google Scholar 

  • Elsaeedy HI, Qasem A, Yakout HA, Mahmoud M (2021) The pivotal role of TiO2 layer thickness in optimizing the performance of TiO2/P-Si solar cell. J Alloys Compd 867:159150

    Article  CAS  Google Scholar 

  • Gan Y, Bi X, Liu Y et al (2020) Numerical investigation energy conversion performance of tin-based perovskite solar cells using cell capacitance simulator. Energies 13:5907

    Article  CAS  Google Scholar 

  • Gao W, Ran C, Xi J et al (2018) High-quality Cs2AgBiBr6 double perovskite film for lead-free inverted planar heterojunction solar cells with 2.2% efficiency. ChemPhysChem 19:1696–1700

    Article  CAS  Google Scholar 

  • Greul E, Petrus ML, Binek A et al (2017) Highly stable, phase pure Cs 2 AgBiBr 6 double perovskite thin films for optoelectronic applications. J Mater Chem A 5:19972–19981

    Article  CAS  Google Scholar 

  • Hossain MI,  Alharbi FH, Tabet N (2015) Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells. Solar Energy 120:370–380. https://doi.org/10.1016/j.solener.2015.07.040

  • Hossain MK, Arnab AA, Das RC et al (2022) Combined DFT, SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs 2 BiAgI 6-based perovskite solar cells with different charge transport layers. RSC Adv 12:35002–35025

    Article  Google Scholar 

  • Hossain MK, Arnab AA, Samajdar DP et al (2023a) Design insights into La2NiMnO6-based perovskite solar cells employing different charge transport layers: DFT and SCAPS-1D Frameworks. Energy Fuel

  • Hossain MK, Ishraque Toki GF, Samajdar DP et al (2023b) Photovoltaic performance investigation of Cs3Bi2I9-based perovskite solar cells with various charge transport channels using DFT and SCAPS-1D frameworks. Energy Fuel 37:7380–7400

    Article  CAS  Google Scholar 

  • Hossain MK, Mohammed MKA, Pandey R et al (2023c) Numerical analysis in DFT and SCAPS-1D on the influence of different charge transport layers of CsPbBr3 perovskite solar cells. Energy Fuel 37:6078–6098

    Article  CAS  Google Scholar 

  • Hossain MK, Samajdar DP, Das RC et al (2023d) Design and simulation of Cs2BiAgI6 double perovskite solar cells with different electron transport layers for efficiency enhancement. Energy Fuel 37:3957–3979

    Article  CAS  Google Scholar 

  • Igbari F, Wang R, Wang Z-K et al (2019) Composition stoichiometry of Cs2AgBiBr6 films for highly efficient lead-free perovskite solar cells. Nano Lett 19:2066–2073

    Article  CAS  Google Scholar 

  • Islam MT, Jani MR, Al Amin SM et al (2020) Numerical simulation studies of a fully inorganic Cs2AgBiBr6 perovskite solar device. Opt Mater (Amst) 105:109957

    Article  CAS  Google Scholar 

  • Izadi F, Ghobadi A, Gharaati A et al (2021) Effect of interface defects on high efficient perovskite solar cells. Optik (Stuttg) 227:166061

    Article  CAS  Google Scholar 

  • Kanoun MB, Kanoun A-A, Merad AE, Goumri-Said S (2021) Device design optimization with interface engineering for highly efficient mixed cations and halides perovskite solar cells. Results Phys 20:103707

    Article  Google Scholar 

  • Kogo A, Sanehira Y, Numata Y et al (2018) Amorphous metal oxide blocking layers for highly efficient low-temperature brookite TiO2-based perovskite solar cells. ACS Appl Mater Interfaces 10:2224–2229

    Article  CAS  Google Scholar 

  • Kong F, Güzel E, Sonmezoglu S (2023) Hydrophobic 4-(isopropylbenzyl) oxy-substituted metallophthalocyanines as a dopant-free hole selective material for high-performance and moisture-stable perovskite solar cells. Mater Today Energy 35:101324

    Article  CAS  Google Scholar 

  • Lee H-J, Na S-I (2022) Investigation of PCBM/ZnO and C60/BCP-based electron transport layer for high-performance pin perovskite solar cells. J Alloys Compd 921:166007

    Article  CAS  Google Scholar 

  • Lee J-W, Lee T-Y, Yoo PJ et al (2014) Rutile TiO 2-based perovskite solar cells. J Mater Chem A 2:9251–9259

    Article  CAS  Google Scholar 

  • Lee K-M, Lin W-J, Chen S-H, Wu M-C (2020) Control of TiO2 electron transport layer properties to enhance perovskite photovoltaics performance and stability. Org Electron 77:105406

    Article  CAS  Google Scholar 

  • Lei H, Hardy D, Gao F (2021) Lead-free double perovskite Cs2AgBiBr6: fundamentals, applications, and perspectives. Adv Funct Mater 31:2105898

    Article  CAS  Google Scholar 

  • Li W, Liu J, Zhao D (2016) Mesoporous materials for energy conversion and storage devices. Nat Rev Mater 1:1–17

    Article  Google Scholar 

  • Lin L, Jiang L, Qiu Y, Yu Y (2017) Modeling and analysis of HTM-free perovskite solar cells based on ZnO electron transport layer. Superlattice Microst 104:167–177

    Article  CAS  Google Scholar 

  • Lv Z, He L, Jiang H et al (2021) Diluted-CdS quantum dot-assisted SnO2 electron transport layer with excellent conductivity and suitable band alignment for high-performance planar perovskite solar cells. ACS Appl Mater Interfaces 13:16326–16335

    Article  CAS  Google Scholar 

  • Mehrabian M, Afshar EN, Akhavan O (2023a) TiO2 and C60 transport nanolayers in optimized Pb-free CH3NH3SnI3-based perovskite solar cells. Mater Sci Eng B 287:116146

    Article  CAS  Google Scholar 

  • Mehrabian M, Akhavan O, Rabiee N et al (2023b) Lead-free MAGeI3 as a suitable alternative for MAPbI3 in nanostructured perovskite solar cells: a simulation study. Environ Sci Pollut Res:1–9

  • Mohandes A, Moradi M, Nadgaran H (2021) Numerical simulation of inorganic Cs 2 AgBiBr 6 as a lead-free perovskite using device simulation SCAPS-1D. Opt Quant Electron 53:1–22

    Article  Google Scholar 

  • Moon MMA, Ali MH, Rahman MF et al (2020) Design and simulation of FeSi2-based novel heterojunction solar cells for harnessing visible and near-infrared light. Phys Status Solidi 217:1900921

    Article  CAS  Google Scholar 

  • Ou Y, Lu J, Zhong X et al (2022) Efficiency improvement of Cs2AgBiBr6 perovskite solar cells with modification of SnS quantum dots. Mater Lett 312:131672

    Article  CAS  Google Scholar 

  • Parida B, Yoon S, Jeong SM et al (2020) Recent progress on cesium lead/tin halide-based inorganic perovskites for stable and efficient solar cells: a review. Sol Energy Mater Sol Cells 204:110212

    Article  CAS  Google Scholar 

  • Patel VD, Gupta D (2022) Solution-processed metal-oxide based hole transport layers for organic and perovskite solar cell: a review. Mater Today Commun 31:103664

    Article  CAS  Google Scholar 

  • Qin Y, Wu H (2022) Photoelectrochemical reduction of CO 2. Photo-and Electro-Catalytic Process Water Split N2 Fixing, CO2 Reduct 275–299

  • Raj A, Kumar M, Kumar A et al (2022) Investigating the potential of lead-free double perovskite Cs2AgBiBr6 material for solar cell applications: a theoretical study. Int J Energy Res 46:13801–13819

    Article  CAS  Google Scholar 

  • Saeed A, Salah MM, Zekry A et al (2023) Investigation of high-efficiency and stable carbon-perovskite/silicon and carbon-perovskite/CIGS-GeTe tandem solar cells. Energies 16:1676

    Article  CAS  Google Scholar 

  • Samanta M, Ahmed SI, Chattopadhyay KK, Bose C (2020) Role of various transport layer and electrode materials in enhancing performance of stable environment-friendly Cs2TiBr6 solar cell. Optik (Stuttg) 217:164805

    Article  CAS  Google Scholar 

  • Savory CN, Walsh A, Scanlon DO (2016) Can Pb-free halide double perovskites support high-efficiency solar cells? ACS energy Lett 1:949–955

    Article  CAS  Google Scholar 

  • Shen W, Jung U, Xian Z et al (2022) Enhanced device performance of Cs2AgBiBr6 double perovskite photodetector by SnO2/ZnO double electron transport layer. J Alloys Compd 929:167329

    Article  CAS  Google Scholar 

  • Slami A, Bouchaour M, Merad L (2020) Comparative study of modelling of Perovskite solar cell with different HTM layers. Int J Mater 7:2313–10555

  • Sonmezoglu S, Akin S (2020) Suppression of the interface-dependent nonradiative recombination by using 2-methylbenzimidazole as interlayer for highly efficient and stable perovskite solar cells. Nano Energy 76:105127

    Article  CAS  Google Scholar 

  • Su M, Feng Z, Feng Z et al (2021) Efficient SnO2/CdS double electron transport layer for Sb2S3 film solar cell. J Alloys Compd 882:160707

    Article  CAS  Google Scholar 

  • Teimouri R, Heydari Z, Ghaziani MP et al (2020) Synthesizing Li doped TiO2 electron transport layers for highly efficient planar perovskite solar cell. Superlattice Microst 145:106627

    Article  CAS  Google Scholar 

  • Tripathi S, Lohia P, Dwivedi DK (2020) Contribution to sustainable and environmental friendly non-toxic CZTS solar cell with an innovative hybrid buffer layer. Sol Energy 204:748–760

    Article  CAS  Google Scholar 

  • Toshniwal A, Jariwala A, Kheraj V, Opanasyuk A, Panchal CJ (2017) Numerical Simulation of Tin Based Perovskite Solar Cell: Effects of Absorber Parameters and Hole Transport Materials. J Nano-and electronic Physics 9:03038-1-03038-4

  • Wang B, Li N, Yang L et al (2021) Organic dye/Cs2AgBiBr6 double perovskite heterojunction solar cells. J Am Chem Soc 143:14877–14883

    Article  CAS  Google Scholar 

  • Wu C, Zhang Q, Liu Y et al (2018) The dawn of lead-free perovskite solar cell: highly stable double perovskite Cs2AgBiBr6 film. Adv Sci 5:1700759

    Article  Google Scholar 

  • Wu D, Tao Y, Huang Y et al (2021) High visible-light photocatalytic performance of stable lead-free Cs2AgBiBr6 double perovskite nanocrystals. J Catal 397:27–35

    Article  CAS  Google Scholar 

  • Xu J, Shi X, Chen J et al (2019) Optimizing solution-processed C60 electron transport layer in planar perovskite solar cells by interfacial modification with solid-state ionic-liquids. J Solid State Chem 276:302–308

    Article  CAS  Google Scholar 

  • Yadav SC, Srivastava A, Manjunath V et al (2022) Properties, performance and multidimensional applications of stable lead-free Cs2AgBiBr6 double perovskite. Mater Today Phys 100731

  • Yun TK, Lee Y, Kim MJ et al (2022) Commensurate assembly of C60 on black phosphorus for mixed-dimensional van der Waals transistors. Small 18:2105916

    Article  CAS  Google Scholar 

  • Zare H, Marandi M, Fardindoost S et al (2015) High-efficiency CdTe/CdS core/shell nanocrystals in water enabled by photo-induced colloidal hetero-epitaxy of CdS shelling at room temperature. Nano Res 8:2317–2328

    Article  CAS  Google Scholar 

  • Zhai M, Chen C, Cheng M (2023) Advancing lead-free Cs2AgBiBr6 perovskite solar cells: challenges and strategies. Sol Energy

  • Zhang P, Wu J, Zhang T et al (2018) Perovskite solar cells with ZnO electron-transporting materials. Adv Mater 30:1703737

    Article  Google Scholar 

  • Zhang Y, Shah T, Deepak FL, Korgel BA (2019) Surface science and colloidal stability of double-perovskite Cs2AgBiBr6 nanocrystals and their superlattices. Chem Mater 31:7962–7969

    Article  CAS  Google Scholar 

  • Zhang Z, Sun Q, Lu Y et al (2022) Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell. Nat Commun 13:3397

    Article  CAS  Google Scholar 

  • Zhou J, Zhou R, Zhu J et al (2021) Colloidal SnO2-assisted CdS electron transport layer enables efficient electron extraction for planar perovskite solar cells. Sol RRL 5:2100494

    Article  Google Scholar 

  • Zhu X, Sun J, Yuan S et al (2019) Efficient and stable planar perovskite solar cells with carbon quantum dots-doped PCBM electron transport layer. New J Chem 43:7130–7135

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MM; methodology: MM, MT-A; investigation: MM, MT-A, OA; formal analysis and investigation: MM, MT-A, OA; writing—original draft preparation: MM, MT-A, OA; writing—review and editing: MM, OA; resources: MM, OA; supervision: MM, OA. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Omid Akhavan.

Ethics declarations

Ethical approval

The following ethical responsibilities of the authors have been confirmed.

Consent to participate

All authors agreed with the content of the manuscript.

Consent for publication

All authors agreed with the publication of the manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: George Z. Kyzas

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrabian, ., Taleb-Abbasi, M. & Akhavan, O. Effects of electron transport layer type on the performance of Pb-free Cs2AgBiBr6 double perovskites: a SCAPS-1D solar simulator–based study. Environ Sci Pollut Res 30, 118754–118763 (2023). https://doi.org/10.1007/s11356-023-30732-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-30732-0

Keywords

Navigation