Skip to main content
Log in

Sulfide Passivation of InP(100) Surface

  • NANOSTRUCTURE TECHNOLOGY
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Passivation of the n-InP(100) surface with sodium sulfide (Na2S) aqueous solution is analyzed by photoluminescence (PL) and X-ray photoelectron spectroscopy (XPS). The room-temperature PL intensity increases essentially even after short treatment with sulfide solution for 1 min. The enhancement in the room-temperature PL intensity after passivation decreases with the increase in the bulk doping level of the semiconductor. Time-resolved PL studies performed at liquid-nitrogen temperature indicate reduction in the surface recombination velocity. This improvement of the PL intensity occurs just after transformation of the native oxide layer consisting mainly of indium phosphates to the passivating layer consisting of indium sulfides and oxides. The surface bands in n-InP(100) remained nearly flat both before and after sulfide passivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. A. del Alamo, Nature (London, U.K.) 479, 317 (2011).

    Article  ADS  Google Scholar 

  2. M. Smit, K. Williams, and J. van der Tol, APL Photon. 4, 050901 (2019).

  3. H. Lewerenz, J. Electrochem. Soc. 161, H3117 (2014).

    Article  Google Scholar 

  4. H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, Nano Lett. 12, 5325 (2012).

    Article  ADS  Google Scholar 

  5. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature (London, U.K.) 409, 66 (2001).

    Article  ADS  Google Scholar 

  6. F. Zafar and A. Iqbal, Proc. R. Soc. London, Ser. A 472, 20150804 (2016).

    ADS  Google Scholar 

  7. D. Li, B. Kristal, Y. Wang, J. Feng, Z. Lu, G. Yu, Z. Chen, Y. Li, X. Li, and X. Xu, ACS Appl. Mater. Interfaces 11, 34067 (2019).

    Article  Google Scholar 

  8. N. Tajik, C. M. Haapamaki, and R. R. LaPierre, Nanotechnology 23, 315703 (2012).

    Article  ADS  Google Scholar 

  9. C. J. Sandroff, R. N. Nottenburg, J. C. Bischoff, and R. Bhat, Appl. Phys. Lett. 51, 33 (1987).

    Article  ADS  Google Scholar 

  10. L. Pavesi, F. Piazza, A. Rudra, J. F. Carlin, and M. Ilegems, Phys. Rev. B 44, 9052 (1991).

    Article  ADS  Google Scholar 

  11. D. H. van Dorp, L. Nyns, D. Cuypers, T. Ivanov, S. Brizzi, M. Tallarida, C. Fleischmann, P. Hönicke, M. Müller, O. Richard, D. Schmeißer, S. de Gendt, D. H. C. Lin, and C. Adelmann, ACS Appl. Electron. Mater. 1, 2190 (2019).

    Article  Google Scholar 

  12. S. Tian, Z. Wei, Y. Li, H. Zhao, X. Fang, J. Tang, D. Fang, L. Sun, G. Liu, B. Yao, and X. Ma, Mater. Sci. Semicond. Process. 17, 33 (2014).

    Article  Google Scholar 

  13. B. J. Scromme, C. J. Sandroff, E. Yablonovitch, and T. Gmitter, Appl. Phys. Lett. 51, 2022 (1987).

    Article  ADS  Google Scholar 

  14. M. V. Lebedev, K. Ikeda, H. Noguchi, Y. Abe, and K. Uosaki, Appl. Surf. Sci. 267, 185 (2013).

    Article  ADS  Google Scholar 

  15. M. V. Lebedev, Yu. M. Serov, T. V. Lvova, R. Endo, T. Masuda, and I. V. Sedova, Appl. Surf. Sci. 533, 147484 (2020).

    Article  Google Scholar 

  16. A. Jablonski and J. Zemek, Surf. Interface Anal. 41, 193 (2009).

    Article  Google Scholar 

  17. Y. Ishikawa, T. Fukui, and H. Hasegawa, J. Vac. Sci. Technol. B 15, 1163 (1997).

    Article  Google Scholar 

Download references

Funding

This work was funded by Russian Foundation for Basic Research, project no. 20-03-00523. In addition, M.V.L. is grateful to JSPS for Invitational Fellowships for Research in Japan (Fellowship ID:S19162).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Lebedev.

Ethics declarations

The authors claim that they have no conflict of interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, M.V., Serov, Y.M., Lvova, T.V. et al. Sulfide Passivation of InP(100) Surface. Semiconductors 54, 1843–1846 (2020). https://doi.org/10.1134/S106378262014016X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378262014016X

Keywords:

Navigation