Skip to main content
Log in

Modification of the Electronic Properties of the n-InP (100) Surface with Sulfide Solutions

  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The electronic properties of n-InP(100) surfaces passivated with various sulfide solutions are studied using photoluminescence and Raman spectroscopy. It is shown that the passivation process leads to an increase in the photoluminescence intensity of the semiconductor, which indicates a decrease in the velocity of nonradiative surface recombination accompanied by a narrowing of the surface space-charge region and an increase in the electron density in the analyzed semiconductor bulk. The efficiency of electronic passivation of the n-InP(100) surface depends on the composition of the sulfide solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. J. A. del Alamo, Nature (London, U.K.) 479, 317 (2011).

    Article  ADS  Google Scholar 

  2. M. Smit, K. Williams, and J. van der Tol, APL Photon. 4, 050901 (2019).

  3. Q. Lin, D. Sarkar, Y. Lin, M. Yeung, L. Blankemeier, J. Hazra, W. Wang, S. Niu, J. Ravichandran, Z. Fan, and R. Kapadia, ACS Nano 11, 5113 (2017).

    Article  Google Scholar 

  4. H. J. Joyce, J. Wong-Leung, C.-K. Yong, C. J. Docherty, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, J. Lloyd-Hughes, L. M. Herz, and M. B. Johnston, Nano Lett. 12, 5325 (2012).

    Article  ADS  Google Scholar 

  5. X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, Nature (London, U.K.) 409, 66 (2001).

    Article  ADS  Google Scholar 

  6. F. Zafar and A. Iqbal, Proc. R. Soc. A 472, 20150804 (2016).

    Article  ADS  Google Scholar 

  7. Z. Li, I. Yang, L. Li, Q. Gao, J. S. Chong, Z. Li, M. N. Lockrey, H. H. Tan, C. Jagadish, and L. Fu, Prog. Nat. Sci. Mater. 28, 178 (2018).

    Article  Google Scholar 

  8. Z. Wu, P. Liu, W. Zhang, K. Wang, and X. W. Sun, ACS Energy Lett. 5, 1095 (2020).

    Article  Google Scholar 

  9. N. Tajik, C. M. Haapamaki, and R. R. LaPierre, Nanotechnology 23, 315703 (2012).

    Article  ADS  Google Scholar 

  10. C.-F. Yen and M.-K. Lee, J. Vac. Sci. Technol. B 30, 052201 (2012).

    Article  Google Scholar 

  11. H.-K. Kang,  Y.-S. Kang, M. Baik, K.-S. Jeong, D.-K. Kim, J.-D. Song, and M.-H. Cho, J. Phys. Chem. C 122, 7226 (2018).

    Article  Google Scholar 

  12. D. H. van Dorp, L. Nyns, D. Cuypers, T. Ivanov, S. Brizzi, M. Tallarida, C. Fleischmann, P. Hönicke, M. Müller, O. Richard, D. Schmeißer, S. DeGendt, D. H. C. Lin, and C. Adelmann, ACS Appl. Electron. Mater. 1, 2190 (2019).

    Article  Google Scholar 

  13. S. Tian, Z. Wei, Y. Li, H. Zhao, X. Fang, J. Tang, D. Fang, L. Sun, G. Liu, B. Yao, and X. Ma, Mater. Sci. Semicond. Process. 17, 33 (2014).

    Article  Google Scholar 

  14. M. V. Lebedev, Yu. M. Serov, T. V. Lvova, R. Endo, T. Masuda, and I. V. Sedova, Appl. Surf. Sci. 533, 147484 (2020).

    Article  Google Scholar 

  15. M. V. Lebedev, Yu. M. Serov, T. V. Lvova, I. V. Sedova, R. Endo, and T. Masuda, Semiconductors 54, 1843 (2020).

    Article  ADS  Google Scholar 

  16. J. M. Moison, M. Van Rompay, and M. Bensoussan, Appl. Phys. Lett. 48, 1362 (1986).

    Article  ADS  Google Scholar 

  17. G. Chen, S. B. Visbeck, D. C. Law, and R. F. Hicks, J. Appl. Phys. 91, 9362 (2002).

    Article  ADS  Google Scholar 

  18. Y. Ishikawa, T. Fukui, and H. Hasegawa, J. Vac. Sci. Technol. B 15, 1163 (1997).

    Article  Google Scholar 

  19. N. Newman, W. E. Spicer, T. Kendelewicz, and I. Lindau, J. Vac. Sci. Technol. B 4, 931 (1986).

    Article  Google Scholar 

  20. J. R. Waldrop, S. P. Kowalczyk, and R. W. Grant, Appl. Phys. Lett. 42, 454 (1983).

    Article  ADS  Google Scholar 

  21. M. V. Lebedev, Semiconductors 54, 699 (2020).

    Article  ADS  Google Scholar 

  22. M. V. Lebedev, T. V. Lvova, A. L. Shakhmin, O. V. Rakhimova, P. A. Dementev, and I. V. Sedova, Semiconductors 53, 892 (2019).

    Article  ADS  Google Scholar 

  23. P. Lautenschlager, M. Garriga, and M. Cardona, Phys. Rev. B 36, 4813 (1987).

    Article  ADS  Google Scholar 

  24. L. Pavesi, F. Piazza, A. Rudra, J. F. Carlin, and M. Ilegems, Phys. Rev. B 44, 9052 (1991).

    Article  ADS  Google Scholar 

  25. R. M. Sieg and S. A. Ringel, J. Appl. Phys. 80, 448 (1996).

    Article  ADS  Google Scholar 

  26. L. Artús, R. Cuscó, J. Ibáñez, N. Blanco, and G. González-Díaz, Phys. Rev. B 60, 5456 (1999).

    Article  ADS  Google Scholar 

  27. B. H. Bairamov, I. P. Ipatova, V. A. Milorava, V. V. Toporov, K. Naukkarinen, T. Tuomi, G. Irmer, and J. Monecke, Phys. Rev. B 38, 5722 (1988).

    Article  ADS  Google Scholar 

  28. B. B. Boudart, B. Prévot, and C. Schwab, Appl. Surf. Sci. 50, 295 (1991).

    Article  ADS  Google Scholar 

  29. A. Pinczuk, A. A. Ballman, R. E. Nahory, M. A. Pollack, and J. M. Worlock, J. Vac. Sci. Technol. 16, 1168 (1979).

    Article  ADS  Google Scholar 

  30. L. A. Farrow, C. J. Sandroff, and M. C. Tamargo, Appl. Phys. Lett. 51, 1931 (1987).

    Article  ADS  Google Scholar 

  31. D. E. Aspnes and A. A. Studna, Phys. Rev. B 27, 985 (1983).

    Article  ADS  Google Scholar 

  32. V. N. Bessolov, M. V. Lebedev, N. M. Binh, M. Friedrich, and D. R. T. Zahn, Semicond. Sci. Technol. 13, 611 (1998).

    Article  ADS  Google Scholar 

  33. E. V. Ivanova, P. A. Dementev, T. V. Lvova, and M. V. Lebedev, J. Phys.: Conf. Ser. 1697, 012061 (2020).

    Google Scholar 

Download references

Funding

This study was partially supported by the Russian Foundation for Basic Research, project no. 20-03-00523.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Lebedev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebedev, M.V., Lvova, T.V., Smirnov, A.N. et al. Modification of the Electronic Properties of the n-InP (100) Surface with Sulfide Solutions. Semiconductors 55, 844–849 (2021). https://doi.org/10.1134/S1063782621100146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782621100146

Keywords:

Navigation