Skip to main content
Log in

Effect of Spark Plasma Sintering Temperature on Thermoelectric Properties of Grained Bi1.9Gd0.1Te3 Compound

  • THERMOELECTRICS AND THEIR APPLICATIONS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Patterns in changes of the microstructure (grain structure) and the thermoelectric properties of the n-type grained Bi1.9Gd0.1Te3 compound, spark-plasma-sintered at different temperatures (TS = 690, 720, 735, 750, 780, and 810 K), have been studied in detail. All the samples studied were highly textured along the 001 direction parallel to the pressing direction, that resulted from preferential orientation of the grains. Orientation factor characterizing a texturing degree and estimated from XRD patterns happened to be weakly TS-dependent. Average grain size measured along the SPS pressing direction was far less as compared to that measured in the perpendicular direction. The thermoelectric properties measured for the perpendicular direction happened to be better than the same properties, but taken for the parallel direction. Of the samples sintered at different temperatures, the highest value of the thermoelectric figure-of-merit equal to ~0.73 for the perpendicular measuring orientation was found for the sample sintered at TS = 750 K. This sample is characterizing by the maximum power factor and the low enough thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. G. S. Nolas, J. Sharp, and H. J. Goldsmid, Thermoelectrics Basic Principles and New Materials Developments (Springer, Berlin, 2001).

    MATH  Google Scholar 

  2. H. J. Goldsmid, Materials 7, 2577 (2014).

    Article  ADS  Google Scholar 

  3. H. Kitagawa, T. Nagamori, T. Tatsuta, T. Kitamura, Y. Shinohara, and Y. Noda, Scr. Mater. 49, 309 (2003).

    Article  Google Scholar 

  4. D. B. Hyun, T. S. Oh, J. S. Hwang, J. D. Shim, and N. V. Kolomoets, Scr. Mater. 40, 49 (1998).

    Article  Google Scholar 

  5. S. Miura, Y. Satob, K. Fukuda, K. Nishimura, and K. Ikeda, Sci. Eng. A 277, 244 (2000).

    Article  Google Scholar 

  6. O. Ivanov, O. Maradudina, and R. Lyubushkin, J. Alloys Compd. 586, 679 (2014).

    Article  Google Scholar 

  7. W. Liu, X. Yan, G. Chen, and Z. Ren, Nano Energy 1, 42 (2012).

    Article  Google Scholar 

  8. Y. Li, J. Jiang, G. Xu, W. Li, L. Zhou, Y. Li, and P. Cui, J. Alloys Compd. 480, 954 (2009).

    Article  Google Scholar 

  9. S. S. Kim, S. Yamamoto, and T. Aizawa, J. Alloys Compd. 375, 107 (2004).

    Article  Google Scholar 

  10. Y. Morisaki, H. Araki, H. Kitagawa, M. Orihashi, K. Hasezaki, and K. Kimura, Mater. Trans. 46, 2518 (2005).

    Article  Google Scholar 

  11. X. K. Duan, K. G. Hu, D. H. Ma, W. N. Zhang, Y. Z. Jiang, and S. C. Guo, Rare Met. 34, 770 (2015).

    Article  Google Scholar 

  12. P. Srivastava and K. Singh, Mater. Lett. 136, 337 (2014).

    Article  Google Scholar 

  13. B. Jarivala, D. Shah, and N. M. Ravindra, J. Electron. Mater. 44, 1509 (2015).

    Article  ADS  Google Scholar 

  14. O. Ivanov, O. Maradudina, and R. Lyubushkin, Mater. Char. 99, 175 (2015).

    Article  Google Scholar 

  15. O. Ben-Yehuda, R. Shuker, Y. Gelbstein, Z. Dashevsky, and M. P. Dariel, J. Appl. Phys. 101, 113707 (2007).

    Article  ADS  Google Scholar 

  16. J. J. Shen, L. P. Hu, T. J. Zhu, and X. B. Zhao, Appl. Phys. Lett. 99, 124102 (2011).

    Article  ADS  Google Scholar 

  17. X. Yan, B. Poudel, W. S. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen, and Z. F. Ren, Nano Lett. 10, 3373 (2010).

    Article  ADS  Google Scholar 

  18. S. D. Bhame, D. Pravarthana, W. Prellier, and J. G. Noudem, Appl. Phys. Lett. 102, 2190 (2013).

    Article  Google Scholar 

  19. X. A. Fan, J. Y. Yang, R. G. Chen, H. S. Yun, W. Zhu, S. Q. Bao, and X. K. Duan, J. Phys. D: Appl. Phys. 39, 740 (2006).

    Article  ADS  Google Scholar 

  20. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, Mater. Sci. Eng. B 117, 334 (2005).

    Article  Google Scholar 

  21. Q. Lognon, F. Gascoin, O. I. Lebedev, L. Lutterotti, S. Gascoin, and D. Chateigner, J. Am. Ceram. Soc. 97, 2038 (2014).

    Article  Google Scholar 

  22. J.-J. Shen,  T.-J. Zhu, X.-B. Zhao, S.-N. Zhang, S.-H. Yang, and Z.-Z. Yin, Energy Environ. Sci. 3, 1519 (2010).

    Article  Google Scholar 

  23. C. Andre, D. Vasilevskiy, S. Turenne, and R. A. Masut, J. Phys. D.: Appl. Phys. 44, 235401 (2011).

    Article  ADS  Google Scholar 

  24. A. Vasil’ev, M. Yaprintsev, O. Ivanov, and E. Danshina, Solid State Sci. 84, 28 (2018).

    Article  ADS  Google Scholar 

  25. J. Yang, F. Wu, Z. Zhu, L. Yao, H. Song, and X. Hu, J. Alloys Compd. 619, 401 (2015).

    Article  Google Scholar 

  26. X. H. Ji, X. B. Zhao, Y. H. Zhang, B. H. Lu, and H. L. Ni, J. Alloys Compd. 387, 282 (2005).

    Article  Google Scholar 

  27. F. Wu, H. Song, J. Jia, and X. Hu, Prog. Natl. Sci. Mater. Int. 23, 408 (2013).

    Article  Google Scholar 

  28. F. Wu, W. Shi, and X. Hu, Electron. Mater. Lett. 11, 127 (2015).

    Article  ADS  Google Scholar 

  29. X. H. Ji, X. B. Zhao, Y. H. Zhang, B. H. Lu, and H. L. Ni, Mater. Lett. 59, 682 (2005).

    Article  Google Scholar 

  30. F. Wu, H. Z. Song, J. F. Jia, F. Gao, Y. J. Zhang, and X. Hu, Phys. Status Solidi A 210, 1183 (2013).

    Article  ADS  Google Scholar 

  31. W. Y. Shi, F. Wu, K. L. Wang, J. J. Yang, H. Z. Song, and X. J. Hu, Electron. Mater. 43, 3162 (2014).

    Article  ADS  Google Scholar 

  32. X. B. Zhao, Y. H. Zhang, and X. H. Ji, Inorg. Chem. Commun. 7, 386 (2004).

    Article  Google Scholar 

  33. O. Ivanov, M. Yaprintsev, R. Lyubushkin, and O. Soklakova, Scr. Mater. 146, 91 (2018).

    Article  Google Scholar 

  34. M. Yaprintsev, A. Vasil’ev, and O. Ivanov, J. Eur. Ceram. Soc. 39, 1193 (2019).

    Article  Google Scholar 

  35. O. Ivanov and M. Yaprintsev, Mater. Res. Express 5, 015905 (2018).

    Article  ADS  Google Scholar 

  36. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Elsevier, Oxford, 2004).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

All of studies were carried out by the scientific equipment of joint research center “Technologies and Materials” at the Belgorod State University.

Funding

This research was funded by the Ministry of Education and Science, Russia, under grant no. 11.3719.2017/PCh (11.3719.2017/4.6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. N. Ivanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yapryntsev, M.N., Vasil’ev, A.E., Ivanov, O.N. et al. Effect of Spark Plasma Sintering Temperature on Thermoelectric Properties of Grained Bi1.9Gd0.1Te3 Compound. Semiconductors 53, 1838–1844 (2019). https://doi.org/10.1134/S1063782619130219

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619130219

Keywords:

Navigation