Skip to main content
Log in

Towards the Use of Cu–S Based Synthetic Minerals for Thermoelectric Applications

  • THERMOELECTRICS AND THEIR APPLICATIONS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Most of the energy produced is lost, mainly as waste heat. Thermoelectricity, which can directly convert heat into electricity, is seen with huge potential to recover part of such heat. However, to be widely used, it is necessary to be based on cheap, available, non-toxic, stable and easy-to-produce good thermoelectric materials. Here we present an overview of the potential of Cu–S based synthetic minerals for thermoelectric applications. In particular, we focus on tetrahedrites, which are world spread minerals with Cu10M2Sb4Si3 (M = Cu, Mn, Fe, Co, Ni, Zn) general formula that show high potential for thermoelectrics. An overview of their properties are presented, with emphasis on those relevant for thermoelectric applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Energy and Environment Report, No 6/2008 (European Environment Agency, 2008). https://www.eea.europa.eu/publications/eea_report_2008_6

  2. Fact Sheet 087-02, U.S. Geological Survey. http://pubs.usgs.gov/fs/2002/fs087-02/

  3. A. P. Gonçalves, E. B. Lopes, J. Monnier, E. Alleno, C. Godart, M. F. Montemor, J.-B. Vaney, and B. Lenoir, Solid State Phenom. 257, 135 (2017).

    Article  Google Scholar 

  4. L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kana-tzidis, Nature (London, U.K.) 508, 373 (2014).

    Article  ADS  Google Scholar 

  5. M. K. Jana and K. Biswas, ACS Energy Lett. 3, 1315 (2018).

    Article  Google Scholar 

  6. Y.-H. Ji, Z.-H. Ge, Z. Li, and J. Feng, J. Alloys Compd. 680, 273 (2016).

    Article  Google Scholar 

  7. A. A. Olvera, N. A. Moroz, P. Sahoo, P. Ren, T. P. Bailey, A. A. Page, C. Uher, and P. F. P. Poudeu, Energy Environ. Sci. 10, 1668 (2017).

    Article  Google Scholar 

  8. G. Agricolae, De natura fossilium (Textbook of Mineralogy) (Dover, Mineola, New York, 2004).

    Google Scholar 

  9. W. Haidinger, Handbuch der Bestimmenden Mineralogie (Braumüller and Seidel, Wien, 1845).

    Google Scholar 

  10. Tetrahedrite, Hudson Institute of Mineralogy. https://www.mindat.org/min-3924.html. Accessed April 22, 2019.

  11. K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Appl. Phys. Express 5, 051201 (2012).

    Article  ADS  Google Scholar 

  12. X. Lu, D. T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).

    Article  Google Scholar 

  13. K. Suekuni, K. Tsuruta, M. Kunii, H. Nishiate, E. Nishibori, S. Maki, M. Ohta, A. Yamamoto, and M. Koyano, J. Appl. Phys. 113, 043712 (2013).

    Article  ADS  Google Scholar 

  14. Y. Bouyrie, C. Candolfi, A. Dauscher, B. Malaman, and B. Lenoir, Chem. Mater. 27, 8354 (2015).

    Article  Google Scholar 

  15. Xu Lu and D. T. Morelli, in Materials Aspect of Thermoelectricity, Ed. by C. Uher (CRC, Taylor and Francis Group, Boca Raton, 2016).

    Google Scholar 

  16. B. J. Skinner, F. D. Luce, and E. Makovicky, Econ. Geol. 67, 924 (1972).

    Article  Google Scholar 

  17. K. Tatsuka and N. Morimoto, Am. Mineral. 62, 1101 (1977).

    Google Scholar 

  18. M. H. Braga, J. A. Ferreira, C. Lopes, and L. F. Malheiros, Mater. Sci. Forum 587–588, 435 (2008).

    Article  Google Scholar 

  19. T. Barbier, P. Lemoine, S. Gascoin, O. I. Lebedev, A. Kaltzoglou, P. Vaqueiro, A. V. Powell, R. I. Smith, and E. Guilmeau, J. Alloys Compd. 634, 253 (2015).

    Article  Google Scholar 

  20. P. Lemoine, C. Bourgès, T. Barbier, V. Nassif, S. Cordier, and E. Guilmeau, J. Solid State Chem. 247, 83 (2017).

    Article  ADS  Google Scholar 

  21. C. An, Y. Jin, K. Tang, and Y. Qian, J. Mater. Chem. 13, 301 (2003).

    Article  Google Scholar 

  22. D. J. James, X. Lu, D. T. Morelli, and S. L. Brock, ACS Appl. Mater. Interfaces 7, 23623 (2015).

    Article  Google Scholar 

  23. S. Fasolin, S. Fiameni, C. Fanciulli, S. Battiston, A. Famengo, and M. Fabrizio, J. Nanosci. Nanotechnol. 17, 1645 (2017).

    Article  Google Scholar 

  24. M. D. Regulacio, S. Y. Tee, S. H. Lim, C. P. Teng, L.-D. Koh, S. Liu, and M.-Y. Han, Nanoscale 9, 17865 (2017).

    Article  Google Scholar 

  25. D. P. Weller, D. L. Stevens, G. E. Kunkel, A. M. Ochs, C. F. Holder, D. T. Morelli, and M. E. Anderson, Chem. Mater. 29, 1656 (2017).

    Article  Google Scholar 

  26. X. Lu and D. T. Morelli, MRS Commun. 3, 129 (2013).

    Article  Google Scholar 

  27. T. Barbier, S. Rollin-Martinet, P. Lemoine, F. Gascoin, A. Kaltzoglou, P. Vaqueiro, A. V. Powell, and E. Guilmeau, J. Am. Ceram. Soc. 99, 51 (2016).

    Article  Google Scholar 

  28. D. P. Weller and D. T. Morelli, J. Alloys Compd. 710, 794 (2017).

    Article  Google Scholar 

  29. S. Battiston, C. Fanciulli, S. Fiameni, A. Famengo, S. Fasolin, and M. Fabrizio, J. Alloys Compd. 702, 75 (2017).

    Article  Google Scholar 

  30. F.-H. Sun, C.-F. Wu, Z. Li, Y. Pan, Asfandiyar, J. Dong, and J.-F. Li, RSC Adv. 7, 18909 (2017).

    Article  Google Scholar 

  31. S.-Y. Kim,  S.-G. Kwak, J.-H. Pi, G.-E. Lee, and I.-H. Kim, J. Electron. Mater. 48, 1857 (2019).

    Article  ADS  Google Scholar 

  32. F.-H. Sun, J. Dong, H. Tang, P.-P. Shang, H.-L. Zhuang, H. Hu, C.-F. Wu, Y. Pan, and J.-F. Li, Nano Energy 57, 835 (2019).

    Article  Google Scholar 

  33. A. P. Gonçalves, E. B. Lopes, J. Monnier, J. Bourgon, J. B. Vaney, A. Piarristeguy, A. Pradel, B. Lenoir, G. Delaizir, M. F. C. Pereira, E. Alleno, and C. Godart, J. Alloys Compd. 664, 209 (2016).

    Article  Google Scholar 

  34. A. U. Khan, N. Vlachos, and Th. Kyratsi, Scr. Mater. 69, 606 (2013).

    Article  Google Scholar 

  35. J. Wang, M. Gu, Y. Bao, X. Li, and L. Chen, J. Electron Mater. 45, 2274 (2015).

    Article  ADS  Google Scholar 

  36. A. P. Gonçalves, E. B. Lopes, B. Villeroy, J. Monnier, C. Godart, and B. Lenoir, RSC Adv. 6, 102359 (2016).

    Article  Google Scholar 

  37. T. K. C. Alves, G. Domingues, E. B. Lopes, and A. P. Gonçalves, J. Electron. Mater. 48, 2028 (2019).

    Article  ADS  Google Scholar 

  38. R. Chetty, A. Bali, M. H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas, and R. C. Mallik, Acta Mater. 100, 266 (2015).

    Article  Google Scholar 

  39. P. Qiu, M. T. Agne, Y. Liu, Y. Zhu, H. Chen, T. Mao, J. Yang, W. Zhang, S. M. Haile, W. G. Zeier, J. Janek, C. Uher, X. Shi, L. Chen, and G. J. Snyder, Nat. Commun. 9, 2910 (2018).

    Article  ADS  Google Scholar 

  40. G. Dennler, R. Chmielowski, S. Jacob, F. Capet, P. Roussel, S. Zastrow, K. Nielsch, I. Opahle, and G. K. H. Madsen, Adv. Energy Mater. 4, 1301581 (2014).

    Article  Google Scholar 

  41. E. Makovicky and B. J. Skinner, Can. Mineral. 17, 619 (1979).

    Google Scholar 

  42. N. Mozgova, V. Mikucionis, V. I. Valiukenas, A. Tsepin, and A. Orliukas, Phys. Chem. Miner. 15, 171 (1987).

    Article  ADS  Google Scholar 

  43. P. Qiu, T. Zhang, Y. Qiu, X. Shi, and L. Chen, Energy Environ. Sci. 7, 4000 (2014).

    Article  Google Scholar 

  44. P. Vaqueiro, G. Guélou, A. Kaltzoglou, R. I. Smith, T. Barbier, E. Guilmeau, and A. V. Powell, Chem. Mater. 29, 4080 (2017).

    Article  Google Scholar 

  45. J. A. Ferreira and M. H. Braga, Mater. Sci. Forum 730–732, 111 (2013).

    Google Scholar 

  46. X. Fan, E. D. Case, X. Lu, and D. T. Morelli, J. Mater. Sci. 48, 7540 (2013).

    Article  ADS  Google Scholar 

  47. R. Chetty, D. S. Prem Kumar, G. Rogl, P. Rogl, E. Bauer, H. Michor, S. Suwas, S. Puchegger, G. Giester, and R. C. Mallik, Phys. Chem. Chem. Phys. 17, 1716 (2015).

    Article  Google Scholar 

  48. R. Chetty, A. Bali, M. H. Naik, G. Rogl, P. Rogl, M. Jain, S. Suwas, and R. C. Mallik, Acta Mater. 100, 266 (2015).

    Article  Google Scholar 

  49. T. Barbier, P. Lemoine, S. Martinet, M. Eriksson, M. Gilmas, E. Hug, G. Guélou, P. Vaqueiro, A. V. Po-well, and E. Guilmeau, RSC Adv. 6, 10044 (2016).

    Article  Google Scholar 

  50. J.-H. Pi,  S.-G. Kwak, S.-Y. Kim, G.-E. Lee, and I.-H. Kim, J. Electron. Mater. 48, 1991 (2019).

    Article  ADS  Google Scholar 

  51. A. P. Gonçalves, E. B. Lopes, M. F. Montemor, J. Monnier, and B. Lenoir, J. Electron. Mater. 47, 2880 (2018).

    Article  Google Scholar 

  52. F. Gucci, F. D’Isanto, R. Zhang, M. J. Reece, F. Smeacetto, and M. Salvo, Materials 12, 573 (2019).

    Article  ADS  Google Scholar 

  53. S. Battiston, F. Montagner, S. Fiameni, A. Famengo, S. Boldrini, A. Ferrario, C. Fanciulli, F. Agresti, and M. Fabrizio, J. Alloys Compd. 792, 953 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António Pereira Gonçalves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonçalves, A.P., Lopes, E.B. Towards the Use of Cu–S Based Synthetic Minerals for Thermoelectric Applications. Semiconductors 53, 1817–1824 (2019). https://doi.org/10.1134/S1063782619130086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619130086

Keywords:

Navigation