Skip to main content
Log in

Examination of Self-Catalyzed III–V Nanowire Growth by Monte Carlo Simulation

  • NANOSTRUCTURES TECHNOLOGY
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The main features of self-catalyzed III–V nanowire growth according to the vapor-liquid-solid mechanism were analyzed using Monte Carlo simulation. The nanowire growth kinetics, flux ratio influence on the nanowire morphology and growth rate were considered. For some growth conditions, the self-equalization effect of metal drop sizes during the self-catalyzed III–V nanowire growth was demonstrated. It is revealed that, only under the adsorption growth mode, all drop sizes reach a single stationary value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. W. Zhihuan and N. Bahram, Nanophotonics 4, 491 (2015).

    Google Scholar 

  2. K. Tomioka, M. Yoshimura, and T. Fukui, Nature (London, U.K.) 488, 189 (2012).

    Article  ADS  Google Scholar 

  3. C. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A. Morral, Phys. Rev. B 77, 155326 (2008).

    Article  ADS  Google Scholar 

  4. T. Rieger, S. Heiderich, S. Lenk, M. I. Lepsa, and D. Grutzmacher, J. Cryst. Growth 353, 39 (2012).

    Article  ADS  Google Scholar 

  5. M. R. Ramdani, J. Ch. Harmand, F. Glas, G. Patriarche, and L. Travers, Cryst. Growth Des. 13, 91 (2013).

    Article  Google Scholar 

  6. V. G. Dubrovskii, T. Xu, A. Alvarez, S. R. Plissard, P. Caroff, F. Glas, and B. Grandidier, Nano Lett. 15, 5580 (2015).

    Article  ADS  Google Scholar 

  7. B. Li, X. Yan, X. Zhang, and X. Ren, Nanoscale Res. Lett. 12, 34 (2017).

    Article  ADS  Google Scholar 

  8. F. Bastiman, H. Kupers, C. Somaschini, and L. Geelhaar, Nanotechnology 27, 095601 (2016).

    Article  ADS  Google Scholar 

  9. S. Breuer, C. Pfuller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, and H. Riechert, Nano Lett. 11, 1276 (2011).

    Article  ADS  Google Scholar 

  10. J. A. Li, N. V. Sibirev, D. Ercolani, V. G. Dubrovskii, and L. Sorba, Cryst. Growth Des. 13, 878 (2013).

    Article  Google Scholar 

  11. K. Sabelfeld and E. Kablukova, Comput. Mat. Sci. 125, 284 (2016).

    Article  Google Scholar 

  12. F. Oehler, A. Cattoni, A. Scaccabarozzi, G. Patriarche, F. Glas, and J.-Ch. Harmand, Nano Lett. 18, 701 (2018).

    Article  ADS  Google Scholar 

  13. P. Krogstrup, H. I. Jorgensen, E. Johnson, M. H. Madsen, C. B. Sorensen, A. Fontcuberta i Morral, M. Aagesen, J. Nygard, and F. Glas, J. Phys. D: Appl. Phys. 46, 313001 (2013).

    Article  Google Scholar 

  14. J. Tersoff, Nano Lett. 15, 6609 (2015).

    Article  ADS  Google Scholar 

  15. F. Glas, M. R. Ramdani, G. Patriarche, and J.-Ch. Harmand, Phys. Rev. B 88, 195304 (2013).

    Article  ADS  Google Scholar 

  16. A. G. Nastovjak, I. G. Neizvestny, and N. L. Shwartz, Pure Appl. Chem. 84, 2619 (2012).

    Article  Google Scholar 

  17. M. A. Vasilenko, I. G. Neizvestny, and N. L. Shwartz, Comput. Mater. Sci. 102, 286 (2015).

    Article  Google Scholar 

  18. M. V. Knyazeva, A. G. Nastovjak, I. G. Neizvestny, and N. L. Shwartz, Semiconductors 49, 60 (2015).

    Article  ADS  Google Scholar 

  19. V. Gorshkov and V. Privman, J. Appl. Phys 122, 204301 (2017).

    Article  ADS  Google Scholar 

  20. A. G. Suprunets, M. A. Vasilenko, and N. L. Shwartz, J. Phys.: Conf. Ser. 690, 012011 (2016).

    Google Scholar 

  21. A. N. Karpov, A. V. Zverev, A. G. Nastovjak, S. V. Usenkov, and N. L. Shwartz, Vychisl. Metody Programm. 15, 388 (2014).

    Google Scholar 

  22. A. A. Spirina, I. G. Neizvestny, and N. L. Shwartz, Def. Dif. Forum 386, 27 (2018).

  23. N. L. Shwartz, M. A. Vasilenko, A. G. Nastovjak, and I. G. Neizvestny, Comput. Mat. Sci. 141, 91 (2018).

    Article  Google Scholar 

  24. Th. Grap, T. Rieger, Ch. Blomers, Th. Schapers, D. Grutzmacher, and M. I. Lepsa, Nanotechnology 24, 335601 (2013).

    Article  Google Scholar 

  25. V. G. Dubrovskii, N. V. Sibirev, G. E. Cirlin, and V. M. Ustinov, Phys. Rev. E 73, 021603 (2006).

    Article  ADS  Google Scholar 

  26. A. G. Nastovjak, I. G. Neizvestny, N. L. Shwartz, and E. S. Sheremet, Optoelectron., Instrum. Data Proces. 45, 342 (2009).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research (grant 18-02-00764).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Nastovjak.

Ethics declarations

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nastovjak, A.G., Usenkova, A.G., Shwartz, N.L. et al. Examination of Self-Catalyzed III–V Nanowire Growth by Monte Carlo Simulation. Semiconductors 53, 2106–2109 (2019). https://doi.org/10.1134/S1063782619120194

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619120194

Keywords:

Navigation