Skip to main content
Log in

Influence of Output Optical Losses on the Dynamic Characteristics of 1.55-μm Wafer-Fused Vertical-Cavity Surface-Emitting Lasers

  • PHYSICS OF SEMICONDUCTOR DEVICES
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of studying the dynamic characteristics of 1.55-μm single-mode vertical-cavity surface-emitting lasers (VCSELs) formed by the fusion of wafers of high-quality Bragg reflectors and an active region based on thin highly strained InGaAs/InAlGaAs quantum wells are presented. It is found that the proposed design of the active region and optical microcavity of the laser make it possible in principle to attain a high level of differential laser gain in the temperature range of 20°C–85°C, but weak electron localization leads to an increase in gain compression at elevated temperatures. Due to this fact, the VCSEL modulation bandwidth at 20°C can be increased from 9.2 to 11.5 GHz due to an increase in output optical losses, while the modulation bandwidth at 85°C does not exceed 8.5 GHz, depends weakly on the output optical losses, and is mainly limited by the optical-gain saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. D. Bimberg, A. Larsson, and A. Joel, Comp. Semicond. 20 (7), 34 (2014).

    Google Scholar 

  2. M.-R. Park, O.-K. Kwon, W.-S. Han, K.-H. Lee, S.-J. Park, and B.-S. Yoo, IEEE Photon. Technol. Lett. 18, 1717 (2006).

    Article  ADS  Google Scholar 

  3. W. Hofmann, IEEE Photon. J. 2, 802 (2010).

    Article  ADS  Google Scholar 

  4. S. Spiga, W. Soenen, A. Andrejew, D. Schoke, X. Yin, J. Bauwelinck, G. Boehm, and M. C. Amann, IEEE J. Lightwave Technol. 35, 727 (2017).

    Article  ADS  Google Scholar 

  5. A. Syrbu,  A. Mircea,  A. Mereuta,  A.  Caliman, C.-A. Berseth, G. Suruceanu, V. Iakovlev, M. Achtenhagen, A. Rudra, and E. Kapon, IEEE Photon. Technol. Lett. 16, 1230 (2004).

    Article  ADS  Google Scholar 

  6. D. Ellafi, V. Iakovlev, A. Sirbu, G. Suruceanu, Z. Mickovic, A. Caliman, A. Mereuta, and E. Kapon, Opt. Express 22, 32180 (2014).

    Article  ADS  Google Scholar 

  7. A. V. Babichev, L. Ya. Karachinsky, I. I. Novikov, A. G. Gladyshev, S. A. Blokhin, S. Mikhailov, V. Iakovlev, A. Sirbu, G. Stepniak, L. Chorchos, J. P. Tur-kiewicz, K. O. Voropaev, A. S. Ionov, M. Agustin, N. N. Ledentsov, and A. Yu. Egorov, IEEE J. Quantum Electron. 53, 2400808 (2017).

    Article  Google Scholar 

  8. A. V. Babichev, L. Ya. Karachinskii, I. I. Novikov, A. G. Gladyshev, S. A. Blokhin, S. Mikhailov, V. Iakovlev, A. Sirbu, G. Stepniak, L. Chorchos, J. P. Tur-kiewicz, K. O. Voropaev, A. S. Ionov, M. Agustin, N. N. Ledentsov, and A. Yu. Egorov, Tech. Phys. Lett. 44, 24 (2018).

    Article  ADS  Google Scholar 

  9. P. Westbergh, J. S. Gustavsson, B. Kogel, A. Hanglund, and A. Larsson, IEEE J. Sel. Top. Quantum. Electron. 17, 1603 (2011).

    Article  ADS  Google Scholar 

  10. S. A. Blokhin, N. A. Maleev, M. A. Bobrov, A. G. Kuzmenkov, A. V. Sakharov, and V. M. Ustinov, Tech. Phys. Lett. 44, 1 (2018).

    Article  ADS  Google Scholar 

  11. S. A. Blokhin, M. A. Bobrov, A. A. Blokhin, A. G. Kuz’menkov, N. A. Maleev, V. M. Ustinov, E. S. Kolodeznyi, S. S. Rochas, A. V. Babichev, I. I. Novikov, A. G. Gladyshev, L. Ya. Karachinskii, D. V. Denisov, K. O. Voropaev, A. S. Ionov, and A. Yu. Egorov, Opt. Spectrosc. 127 (1) (2019, in press).

  12. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

    Google Scholar 

  13. D. Ellafi, V. Iakovlev, A. Sirbu, S. Grigore, Z. Mickovic, A. Caliman, A. Mereuta, and E. Kapon, IEEE J. Sel. Top. Quantum Electron. 21, 1700509 (2015).

    Article  Google Scholar 

  14. S. Spiga, D. Schoke, A. Andrejew, G. Boehm, and M.-C. Amann, IEEE J. Lightwave Technol. 35, 3130 (2017).

    Article  ADS  Google Scholar 

  15. A. Grabmaier, G. Fuchs, A. Hangleiter, R. W. Glew, P. D. Greene, and J. E. A. Whiteaway, J. Appl. Phys. 70, 2467 (1991).

    Article  ADS  Google Scholar 

  16. M. Willatzen, T. Takahashi, and Y. Arakawa, IEEE Photon. Technol. Lett. 4, 682 (1992).

    Article  ADS  Google Scholar 

  17. A. Grabmaier, A. Hangleiter, G. Fuchs, J. E. A. Whiteaway, and R. W. Glew, Appl. Phys. Lett. 59, 3024 (1991).

    Article  ADS  Google Scholar 

  18. A. Hangleiter, A. Grabmaier, and G. Fuchs, IEEE Trans. Electron Dev. 40, 2106 (1993).

    Article  ADS  Google Scholar 

  19. C. Y. Tsai, Y. H. Lo, and R. M. Spencer, Appl. Phys. Lett. 67, 3084 (1995).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the Federal target program “Research and Development in Priority Areas of the Science and Technology Complex of Russia for 2014–2020” (agreement no. 14.578.21.0253, unique identifier RFMEFI57817X0253).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Blokhin.

Ethics declarations

The authors claim that they have no conflict of interest.

Additional information

Translated by N. Korovin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhin, S.A., Bobrov, M.A., Blokhin, A.A. et al. Influence of Output Optical Losses on the Dynamic Characteristics of 1.55-μm Wafer-Fused Vertical-Cavity Surface-Emitting Lasers. Semiconductors 53, 1104–1109 (2019). https://doi.org/10.1134/S1063782619080074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619080074

Keywords:

Navigation