Skip to main content
Log in

Energy Expenditure Upon the Formation of the Elastically Stressed State in the Layers of a Step-Graded Metamorphic Buffer in a Heterostructure Grown on a (001) GaAs Substrate

  • SEMICONDUCTOR STRUCTURES, LOW-DIMENSIONAL SYSTEMS, AND QUANTUM PHENOMENA
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

On the basis of data on X-ray structural analysis performed by the method of reciprocal-space mapping and investigations using secondary-ion mass spectrometry and transmission electron microscopy, it is shown that vertical compressive stresses also arise in a multilayer epitaxial heterostructure comprised of a step-graded metamorphic buffer along with lateral compressive stresses. The cause of the appearance of vertical stresses is the effect of interlayer hardening, which arises due to the deceleration of fragments of glide dislocations by interphase boundaries. Analysis performed within the framework of the linear theory of elasticity shows that the elastically stressed state of the buffer steps is similar to the state that can be achieved as a result of a two-stage deformation process: bulk and biaxial compression. Bulk compression leads to large energy expenditures in the formation of the structure of the buffer steps, which is reflected, in particular, in violation of the coherence between the dislocation-free and the underlying layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. T. Kujofsa and J. E. Ayers, Int. J. High Speed Electron. Syst. 24, 1520009 (2015).

    Article  Google Scholar 

  2. A. S. Bugaev, G. B. Galiev, P. P. Mal’tsev, S. S. Pushkarev, and Yu. V. Fedorov, Nano- Mikrosist. Tekh., No. 10 (147), 14 (2012).

  3. D. J. Dunstan, Philos. Mag. A 73, 1323 (1996).

    Article  ADS  Google Scholar 

  4. J. Tersoff, Appl. Phys. Lett. 62, 693 (1993).

    Article  ADS  Google Scholar 

  5. R. Beanland, D. J. Dunstan, and P. J. Goodhew, Adv. Phys. 45, 87 (1996).

    Article  ADS  Google Scholar 

  6. D. J. Dunstan, P. Kidd, L. K. Howard, and R. H. Dixon, Appl. Phys. Lett. 59, 3390 (1991).

    Article  ADS  Google Scholar 

  7. D. J. Dunstan, P. Kidd, P. E. Fewster, N. L. Andrew, R. Grey, J. P. R. David, L. Gonzalez, Y. Gonzalez, A. Sacedon, and F. Gonzalez-Sanz, Appl. Phys. Lett. 65, 839 (1994).

    Article  ADS  Google Scholar 

  8. B. W. Dodson, J. Appl. Phys. 53, 37 (1988).

    Google Scholar 

  9. F. Romanato, E. Napolitani, A. Carnera, A. V. Drigo, L. Lazzarini, G. Salviati, C. Ferrari, A. Bosacchi, and S. Franchi, J. Appl. Phys. 86, 4748 (1999).

    Article  ADS  Google Scholar 

  10. D. Gonzalez, D. Araujo, G. Aragon, and R. Garcia, Appl. Phys. Lett. 71, 3099 (1997).

    Article  ADS  Google Scholar 

  11. L. B. Freund, J. C. Ramirez, and A. F. Bower, Mater. Res. Soc. Symp. Proc. 160, 47 (1990).

    Article  Google Scholar 

  12. A. V. Nokhrin, V. N. Chuvil’deev, V. I. Kopylov, Yu. G. Lopatin, O. E. Pirozhnikova, N. V. Sakharov, A. V. Piskunov, and N. A. Kozlova, Vestn. Nizhegor. Univ. im. N. I. Lobachevskogo, No. 5 (2), 142 (2010).

    Google Scholar 

  13. A. I. Gusev, Phys. Usp. 41, 49 (1998).

    Article  ADS  Google Scholar 

  14. J. E. Ayers, Heteroepitaxy of Semiconductors. Theory, Growth, and Characterization (Taylor and Francis Group, Roca Raton, London, New York, 2007), Chap. 5, p. 164.

    Book  Google Scholar 

  15. J. E. Ayers, S. K. Ghandhi, and L. J. Schowalter, J. Cryst. Growth 113, 430 (1991).

    Article  ADS  Google Scholar 

  16. A. H. Aleshin, A. S. Bugaev, M. A. Ermakova, and O. A. Ruban, Semiconductors 49, 1039 (2015).

    Article  ADS  Google Scholar 

  17. G. Feuillet and D. Cherns, Mater. Sci. Forum 10–12, 803 (1986).

    Article  Google Scholar 

  18. A. N. Aleshin, A. S. Bugaev, M. A. Ermakova, and O. A. Ruban, Crystallogr. Rep. 61, 299 (2016).

    Article  ADS  Google Scholar 

  19. D. J. Dunstan, P. Kidd, R. Beanland, A. Sacedon, E. Calleja, L. Gonzalez, Y. Gonzalez, and F. J. Pacheco, Mater. Sci. Technol. 12, 181 (1996).

    Article  Google Scholar 

  20. K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science. For Electrical Engineers and Materials Scientists (Macmillan, New York, 1992), Appendix E, p. 411.

  21. C. C. Strel’chenko and V. V. Lebedev, A3B5 Compounds, The Handbook (Metallurgiya, Moscow, 1984), p. 50 [in Russian].

    Google Scholar 

  22. J. E. Ayers, Heteroepitaxy of Semiconductors. Theory, Growth, and Characterization (Taylor and Francis Group, Roca Raton, London, New York, 2007), Chap. 2, p. 30.

    Book  Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Fizmatlit, Moscow, 2003; Pergamon, New York, 1986), Chap. 1, p. 58.

  24. Yu. P. Khapachev and F. N. Chukhovskii, Sov. Phys. Crystallogr. 34, 465 (1989).

    Google Scholar 

  25. A. Ballato, IEEE Trans. Ultrason., Ferroelectr., Freq. Control 43, 56 (1996).

    Article  Google Scholar 

  26. V. E. Ankudinov, D. D. Aflyatunova, M. D. Krivilev, and G. A. Gordeev, Computer Simulation of the Transfer and Deformation Processes in Continuous Media, The School-Book (Udmurts. Univ., Izhevsk, 2014) [in Russian].

    Google Scholar 

Download references

Funding

The work was performed as part of the State Task for 2019 no. 075-00816-19-00 of December 27, 2018, for the Institute of Ultrahigh Frequency Semiconductor Electronics, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Aleshin.

Ethics declarations

The authors declare they have no conflict of interests.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshin, A.N., Bugaev, A.S., Ruban, O.A. et al. Energy Expenditure Upon the Formation of the Elastically Stressed State in the Layers of a Step-Graded Metamorphic Buffer in a Heterostructure Grown on a (001) GaAs Substrate. Semiconductors 53, 1066–1074 (2019). https://doi.org/10.1134/S1063782619080025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619080025

Keywords:

Navigation