Skip to main content
Log in

Comparative analysis of strain fields in layers of step-graded metamorphic buffers of various designs

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Spatial distribution of residual elastic strain in the layers of two step-graded metamophic buffers of various designs, grown by molecular beam epitaxy from ternary InxAl1–xAs solutions on GaAs(001) substrates, is obtained using reciprocal space mapping by three-axis X-ray diffractometry and the linear theory of elasticity. The difference in the design of the buffers enabled the formation of a dislocation-free layer with different thickness in each of the heterostructures, which was the main basis of this study. It is shown that, in spite of the different design of graded metamorphic buffers, the nature of strain fields in them is the same, and the residual elastic strains in the final elements of both buffers adjusted for the effect of work hardening subject to the same phenomenological law, which describes the strain relief process in single-layer heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Imaizumi, M. Hirotani, and T. Soga, in Proceedings of the IEEE 42nd Photovoltaic Specialist Conference, New Orleans, USA, 2015.

    Google Scholar 

  2. R. Kumar, A. Bag, P. Mukhopadhyay, S. Das, and D. Biswas, Appl. Surf. Sci. 357, 922 (2015).

    Article  ADS  Google Scholar 

  3. T. Kujofsa and J. E. Ayers, Int. J. High Speed Electron. Syst. 24, 152009 (2015).

    Google Scholar 

  4. A. M. Andrews, J. S. Speck, A. E. Romanov, M. Bobeth, and W. Pompe, J. Appl. Phys. 91, 1933 (2002).

    Article  ADS  Google Scholar 

  5. G. B. Galiev, E. A. Klimov, R. M. Imamov, G. V. Ganin, S. S. Pushkarev, P. P. Maltsev, O. M. Zhigalina, A. S. Orekhov, A. L. Vasil’ev, M. Yu. Presniakov, and I. N. Trunkin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10, 495 (2016).

    Article  Google Scholar 

  6. J. Tersoff, Appl. Phys. Lett. 62, 693 (1993).

    Article  ADS  Google Scholar 

  7. D. J. Dunstan, J. Mater. Sci.: Mater. Electron. 8, 337 (1997).

    Google Scholar 

  8. E. Ayers, Heteroepitaxy of Semiconductors. Theory, Growth, and Characterization (Taylor and Francis Group, New York, 2007).

    Book  Google Scholar 

  9. D. J. Dunstan, P. Kidd, L. K. Howard, and R. H. Dixon, Appl. Phys. Lett. 59, 3390 (1991).

    Article  ADS  Google Scholar 

  10. D. J. Dunstan, P. Kidd, P. F. Fewster, N. L. Andrew, R. Grey, P. R. David, L. Gonzalez, Y. Gonzalez, A. Sacedon, and F. Gonzalez-Sanz, Appl. Phys. Lett. 65, 839 (1994).

    Article  ADS  Google Scholar 

  11. D. J. Dunstan, S. Young, and R. H. Dixon, J. Appl. Phys. 70, 3039 (1991).

    Article  ADS  Google Scholar 

  12. A. V. Drigo, A. Audinli, A. Carnera, F. Genova, C. Rigo, C. Ferrari, P. Franzosi, and G. Salviati, J. Appl. Phys. 66, 1975 (1989).

    Article  ADS  Google Scholar 

  13. K. Kamigaki, H. Sakashita, M. Nakayama, N. Sano, and H. Terauchi, Appl. Phys. Lett. 49, 1071 (1986).

    Article  ADS  Google Scholar 

  14. P. J. Orders and B. F. Usher, Appl. Phys. Lett. 50, 980 (1987).

    Article  ADS  Google Scholar 

  15. P. M. J. Maree, J. C. Barbour, J. F. van der Veen, K. L. Kavanagh, C. W. T. Bulle-Lieuwma, and M. P. A. Viegers, J. Appl. Phys. 62, 4413 (1987).

    Article  ADS  Google Scholar 

  16. D. K. Bowen and B. K. Tanner, High Resolution X-Ray Diffractometry and Topography (Taylor Francis, London, 1998, Nauka, St. Petersburg, 2002).

    Google Scholar 

  17. V. A. Bushuev, R. N. Kyutt, and Yu. P. Khapachev, Physical Principles of X-ray Diffracrometry Definitions of Real Structure Parameters of Multilayered Epitaxial Layers (Kab.-Balk. Gos. Univ., Nal’chik, 1996) [in Russian].

    Google Scholar 

  18. A. N. Aleshin, A. S. Bugaev, M. A. Ermakova, and O. A. Ruban, Semiconductors 49, 1039 (2015).

    Article  ADS  Google Scholar 

  19. J.-M. Chauveau, Y. Androussi, A. Lefebvre, J. di Persio, and Y. Cordier, J. Appl. Phys. 93, 4219 (2003).

    Article  ADS  Google Scholar 

  20. Yu. P. Khapachev and F. N. Chukhovskii, Sov. Phys. Crystallogr. 34, 465 (1989).

    Google Scholar 

  21. S. S. Strel’chenko and V. V. Lebedev, A3B5 Compounds, The Reference Book (Metallurgiya, Moscow, 1984) [in Russian].

    Google Scholar 

  22. K. N. Tu, J. W. Mayer, and L. C. Feldman, Electronic Thin Film Science. For Electrical Engineers and Materials Scientists (Macmillan, New York, 1992).

    Google Scholar 

  23. Y. Cordier and D. Ferre, J. Cryst. Growth 201–202, 263 (1999).

    Article  Google Scholar 

  24. D. J. Dunstan, Philos. Mag. A 73, 1323 (1996).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Aleshin.

Additional information

Original Russian Text © A.N. Aleshin, A.S. Bugaev, O.A. Ruban, N.Yu. Tabachkova, I.V. Shchetinin, 2017, published in Fizika Tverdogo Tela, 2017, Vol. 59, No. 10, pp. 1956–1963.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshin, A.N., Bugaev, A.S., Ruban, O.A. et al. Comparative analysis of strain fields in layers of step-graded metamorphic buffers of various designs. Phys. Solid State 59, 1978–1986 (2017). https://doi.org/10.1134/S106378341710002X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378341710002X

Navigation