Skip to main content
Log in

Mechanism and Features of Field Emission in Semiconductors

  • SURFACES, INTERFACES, AND THIN FILMS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The field electron emission from individual grains on the surface of Si and III–V semiconductors, namely, gallium arsenide, indium arsenide, and indium antimonide is investigated by scanning tunneling microscopy. From the correspondence of the functional dependence of the IV characteristic to the theory, the emission mechanism is determined as direct tunneling through a depleted or enriched subsurface layer at the voltages V < 1 V and the tunneling emission from the surface electronic states at the voltages V > 1 V. A field-emission threshold of (1–5) × 106 V/cm is obtained, which is significantly lower than the values for metals and carbon. The determining factors of this emission mechanism are the Schottky effect, the localization and size quantization of “light” electrons in the surface area of III–V semiconductors, and the presence of a subsurface depletion layer in silicon. According to the data obtained for the values of the field-emission threshold, indium antimonide in the form of submicron grain particles is the most efficient field emitter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. N. V. Egorov and E. P. Sheshin, Electron Emission (Intellekt, Moscow, 2011) [in Russian].

    Google Scholar 

  2. Yu. B. Gulyaev, N. P. Aban’shin, B. I. Gorfinkel’, S. P. Morev, A. F. Rezchikov, N. I. Sinitsyn, and A. N. Yakunin, Tech. Phys. Lett. 39, 525 (2013).

    Article  ADS  Google Scholar 

  3. E. I. Goldman, Yu. B. Gulyaev, A. G. Zhdan, and G. V. Chucheva, Semiconductors 44, 1016 (2010).

    Article  ADS  Google Scholar 

  4. T. V. Blank and Yu. A. Gol’dberg, Semiconductors 41, 1263 (2007).

    Article  ADS  Google Scholar 

  5. A. G. Zhdan, N. F. Kukharskaya, V. G. Naryshkina, and G. V. Chucheva, Semiconductors 41, 1117 (2007).

    Article  ADS  Google Scholar 

  6. N. D. Zhukov, E. G. Glukhovskoy, and D. S. Mosiyash, Semiconductors 50, 894 (2016).

    Article  ADS  Google Scholar 

  7. S. A. Rykov, Scanning Probe Microscopy of Semiconductor Materials and Nanostructures (Nauka, St. Petersburg, 2001) [in Russian].

    Google Scholar 

  8. A. Milnes and D. Feucht, Heterojunctions and Metal Semiconductor Junctions (Mir, Moscow, 1975; Academic, New York, 1972)

  9. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981; Energiya, Moscow, 1973).

  10. N. D. Zhukov, D. S. Mosiyash, A. A. Khazanov, and N. P. Aban’shin, Prikl. Fiz., No. 3, 93 (2015).

  11. E. G. Glukhovskoi and N. D. Zhukov, Tech. Phys. Lett. 41, 687 (2015).

    Article  ADS  Google Scholar 

  12. O. Madelung, Physics of III–V Compounds (Mir, Moscow, 1967; Wiley, New York, 1964)

Download references

ACKNOWLEDGMENTS

The study was supported by the Russian Foundation for Basic Research, project no. 16-07-00136.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Zhukov.

Additional information

Translated by V. Bukhanov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, N.D., Mikhailov, A.I. & Mosiyash, D.S. Mechanism and Features of Field Emission in Semiconductors. Semiconductors 53, 321–325 (2019). https://doi.org/10.1134/S1063782619030229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782619030229

Navigation