Skip to main content
Log in

Effect of the Copper Content on the Kinetics of the Microwave Photoconductivity of CIGS Solid Solutions

  • ELECTRONIC PROPERTIES OF SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The kinetics of the photoresponse of microwave photoconductivity (9 GHz, TE101-type cavity) on excitation by laser light pulses with a wavelength of 337 nm and a duration of 8 ns in copper-deficient Cu1 –x(In0.7Ga0.3)Se2 (CIGS) (0 < x ≤ 0.4) solid solutions with the chalcopyrite structure is investigated in a wide light intensity range. With an increase in the laser radiation density to ~5 × 1014 photon/cm2 per pulse, the photoresponse acquires, along with the previously revealed skin effect, the effect of the filling of traps created by VCu vacancies and Cu+2 · VCu defect associates, the concentration of which increases with a decrease in x in the CIGS formula.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Farenburkh and R. Bube, Fundamentals of Solar Cells: Photovoltaic Solar Energy Conversion (Academic, New York, 1983; Energoatomizdat, Moscow, 1987), Chap. 1.

  2. M. Burgelman and J. Marlein, in Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 2008, p. 2151.

  3. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, et al., Progr. Photovolt. Res. Appl. 19, 894 (2010).

    Article  Google Scholar 

  4. E. R. Baek, V. Astini, A. Tirta, and B. Kim, Curr. Appl. Phys. 11, S76 (2011).

    Article  ADS  Google Scholar 

  5. S. Spiering, S. Paetel, F. Kessle, M. Igalson, and H. A. Maksoud, Thin Solid Films 582, 328 (2015).

    Article  ADS  Google Scholar 

  6. M. Turcu, O. Pakma, and U. Rau, Appl. Phys. Lett. 80, 2598 (2002).

    Article  ADS  Google Scholar 

  7. V. Deprédur, D. Tanaka, Y. Aida, M. Carlberg, N. Fèvre, et al., J. Appl. Phys. 115, 044503 (2014).

    Article  ADS  Google Scholar 

  8. Hung-Ing Chen, Jen-Cheng Wang, Chia-Hui Fang, Yu-Ting Liang, Tung-Po Hsieh, et al., Appl. Mech. Mater. 110–116, 1187 (2012).

  9. I. N. Odin, M. V. Chukichev, M. V. Gapanovich, A. V. Vasil’ev, and G. F. Novikov, Mendeleev Commun. 28, 248 (2018).

    Article  Google Scholar 

  10. M. V. Gapanovich, I. N. Odin, E. V. Rabenok, P. S. Orishina, and G. F. Novikov, Inorg. Mater. 54 (2018).

  11. P. S. Orishina, E. V. Rabenok, and G. F. Novikov, Nauch. Al’manakh 41, 178 (2018).

    Google Scholar 

  12. I. L. Repins, W. K. Metzger, C. L. Perkins, J. V. Li, and M. A. Contreras, in Proceedings of the 34th IEEE Photovoltaic Specialists Conference PVSC, Philadelphia, Pennsylvania, USA, 2009, p. 000978.

  13. T. Sakurai, K. Taguchi, M. M. Islam, S. Ishizuka, A. Yamada, et al., Jpn. J. Appl. Phys. 50, 05FC01 (2011).

    Article  Google Scholar 

  14. G. F. Novikov, A. A. Marinin, and E. V. Rabenok, Instrum. Exp. Tech. 53, 233 (2010).

    Article  Google Scholar 

  15. G. F. Novikov, J. Renewable Sustainable Energy 7, 011204 (2015).

    Article  Google Scholar 

  16. M. V. Gapanovich, I. N. Odin, M. V. Chukichev, V. F. Kozlovskii, and G. F. Novikov, Inorg. Mater. 52, 53 (2016).

    Article  Google Scholar 

  17. M. Venkatachalam, M. D. Kannan, S. Jayakumar, R. Balasundaraprabhu, A. K. Nandakumar, et al., Sol. Energy Mater. Sol. Cells 92, 571 (2008).

    Article  Google Scholar 

  18. Myoung Guk Park, Sejin Ahn, Jae Ho Yun, Jihye Gwak, Ara Cho, et al., J. Alloys Compd. 513, 68 (2012).

    Article  Google Scholar 

  19. M. Theelen, C. Foster, H. Steijvers, N. Barreau, Z. Vroon, et al., Sol. Energy Mater. Sol. Cells 141, 49 (2015).

    Article  Google Scholar 

  20. G. F. Novikov, Sci. Appl. Photogr. 39, 513 (1998).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was carried out using a USF “Unique scientific facility for measuring the photogenerated carrier lifetimes by the microwave photoconductivity method in the frequency range of 9 GHz”.

The study was supported by the Russian Foundation for Basic Research, project no. 16-08-01234 and state task no. 01201361850.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Novikov.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, G.F., Rabenok, E.V., Orishina, P.S. et al. Effect of the Copper Content on the Kinetics of the Microwave Photoconductivity of CIGS Solid Solutions. Semiconductors 53, 304–309 (2019). https://doi.org/10.1134/S106378261903014X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378261903014X

Navigation