Skip to main content
Log in

Suppression of Recombination in the Waveguide of a Laser Heterostructure by Means of Double Asymmetric Barriers

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

A semiconductor-laser design is proposed in which parasitic recombination in the waveguide region is suppressed by means of double asymmetric barriers adjacent to the active region. Double asymmetric barriers block the undesirable transport of one type of charge carrier while allowing the transport of the other type of carrier. The spacer in the double asymmetric barrier can serve to compensate the elastic strain introduced by the barrier layers as well as to control the energy spectrum of charge carriers and, thus, the transmission coefficient. By the example of a laser with Al0.2Ga0.8As waveguide layers, it is shown that the design with double asymmetric barriers makes it possible to suppress undesirable electron transport by a factor of 4 in comparison to the design using single asymmetric barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. A. Pikhtin, A. V. Lyutetskiy, D. N. Nikolaev, S. O. Slipchenko, Z. N. Sokolova, V. V. Shamakhov, I. S. Shashkin, A. D. Bondarev, L. S. Vavilova, and I. S. Tarasov, Semiconductors 48, 1342 (2014).

    Article  ADS  Google Scholar 

  2. I. S. Shashkin, D. A. Vinokurov, A. V. Lyutetskiy, D. N. Nikolaev, N. A. Pikhtin, M. G. Rastegaeva, Z. N. Sokolova, S. O. Slipchenko, A. L. Stankevich, V. V. Shamakhov, D. A. Veselov, A. D. Bondarev, and I. S. Tarasov, Semiconductors 46, 1207 (2012).

    Article  ADS  Google Scholar 

  3. I. S. Shashkin, D. A. Vinokurov, A. V. Lyutetskiy, D. N. Nikolaev, N. A. Pikhtin, N. A. Rudova, Z. N. Sokolova, S. O. Slipchenko, A. L. Stankevich, V. V. Shamakhov, D. A. Veselov, K. V. Bakhvalov, and I. S. Tarasov, Semiconductors 46, 1211 (2012).

    Article  ADS  Google Scholar 

  4. N. A. Pikhtin, S. O. Slipchenko, I. S. Shashkin, M. A. Ladugin, A. A. Marmalyuk, A. A. Podoskin, and I. S. Tarasov, Semiconductors 44, 1365 (2010).

    Article  ADS  Google Scholar 

  5. D. A. Veselov, I. S. Shashkin, K. V. Bakhvalov, A. V. Lyutetskiy, N. A. Pikhtin, M. G. Rastegaeva, S.O. Slipchenko, E. A. Bechvay, V. A. Strelets, V. V. Shamakhov, and I. S. Tarasov, Semiconductors 50, 1225 (2016).

    Article  ADS  Google Scholar 

  6. H. Kurakake, T. Uchida, T. Yamamoto, T. Higashi, S. Ogita, and M. Kobayashi, IEEE J. Sel. Top. Quant. Electron. 3, 632 (1997).

    Article  Google Scholar 

  7. L. V. Asryan and S. Luryi, Solid State Electron. 47, 205 (2003).

    Article  ADS  Google Scholar 

  8. L. V. Asryan, N. V. Kryzhanovskaya, M. V. Maximov, A. Yu. Egorov, and A. E. Zhukov, Semicond. Sci. Technol. 26, 055025 (2011).

    Article  ADS  Google Scholar 

  9. A. E. Zhukov, N. V. Kryzhanovskaya, M. V. Maximov, A. Yu. Egorov, M. M. Pavlov, F. I. Zubov, and L. V. Asryan, Semiconductors 45, 530 (2011).

    Article  ADS  Google Scholar 

  10. L. V. Asryan, N. V. Kryzhanovskaya, M. V. Maximov, F. I. Zubov, and A. E. Zhukov, J. Appl. Phys. 114, 143103 (2013).

    Article  ADS  Google Scholar 

  11. A. E. Zhukov, N. V. Kryzhanovskaya, F. I. Zubov, Y. M. Shernyakov, M. V. Maximov, E. S. Semenova, K. Yvind, and L. V. Asryan, Appl. Phys. Lett. 100, 021107 (2012).

    Article  ADS  Google Scholar 

  12. F. I. Zubov, M. V. Maximov, Yu. M. Shernyakov, N. V. Kryzhanovskaya, E. S. Semenova, K. Yvind, L. V. Asryan, and A. E. Zhukov, Electron. Lett. 51, 1106 (2015).

    Article  Google Scholar 

  13. A. E. Zhukov, L. V. Asryan, E. S. Semenova, F. E. Zubov, N. V. Kryzhanovskaya, and M. V. Maximov, Semiconductors 49, 935 (2015).

    Article  ADS  Google Scholar 

  14. L. V. Asryan, F. I. Zubov, N. V. Kryzhanovskaya, M. V. Maximov, and A. E. Zhukov, Semiconductors 50, 1362 (2016).

    Article  ADS  Google Scholar 

  15. Yu. S. Polubavkina, F. I. Zubov, E. I. Moiseev, N. V. Kryzhanovskaya, M. V. Maximov, E. S. Semenova, K. Yvind, L. V. Asryan, and A. E. Zhukov, Semiconductors 51, 254 (2017).

    Article  ADS  Google Scholar 

  16. R. Tsu and L. Esaki, Appl. Phys. Lett. 22, 562 (1973).

    Article  ADS  Google Scholar 

  17. J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. I. Zubov.

Additional information

Original Russian Text © F.I. Zubov, M.V. Maximov, N.Yu. Gordeev, Yu.S. Polubavkina, A.E. Zhukov, 2018, published in Fizika i Tekhnika Poluprovodnikov, 2018, Vol. 52, No. 2, pp. 260–265.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zubov, F.I., Maximov, M.V., Gordeev, N.Y. et al. Suppression of Recombination in the Waveguide of a Laser Heterostructure by Means of Double Asymmetric Barriers. Semiconductors 52, 248–253 (2018). https://doi.org/10.1134/S1063782618020240

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618020240

Navigation