Skip to main content
Log in

Inhomogeneous dopant distribution in III–V nanowires

  • XXI International Symposium “Nanophysics and Nanoelectronics”, Nizhny Novgorod, March 13–16, 2017
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

We present a theoretical study of the dopant spatial distribution in III–V nanowires grown by molecular beam epitaxy. The evolution of the dopant concentration is obtained by solving the non-stationary diffusion equation. Within the model, it is shown why and how the dopant inhomogeneity appears, as observed experimentally in the case of Be doping of GaAs nanowires and in other material systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Gradecak, F. Qian, Y. Li, H. G. Park, and C. M. Lieber, Appl. Phys. Lett. 87, 173111 (2005).

    Article  ADS  Google Scholar 

  2. V. G. Dubrovskii, G. E. Cirlin, and V. M. Ustinov, Semiconductors 43, 1539 (2009).

    Article  ADS  Google Scholar 

  3. V. G. Dubrovskii, N. V. Sibirev, and G. E. Cirlin, Tech. Phys. Lett. 30, 682 (2004).

    Article  ADS  Google Scholar 

  4. S. Hirano, N. Takeuchi, S. Shimada, K. Masuya, K. Ibe, H. Tsunakawa, and M. Kuwabara, J. Appl. Phys. 98, 094305 (2005).

    Article  ADS  Google Scholar 

  5. E. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, and C. M. Lieber, Proc. Natl. Acad. Sci. USA 101, 14017 (2004).

    Article  ADS  Google Scholar 

  6. G. Zheng, W. Lu, S. Jin, and C. M. Lieber, Adv. Mater. 16, 1890 (2004).

    Article  Google Scholar 

  7. M. T. Björk, B. J. Ohlsson, C. Thelander, A. I. Persson, K. Deppert, L. R. Wallenberg, and L. Samuelson, Appl. Phys. Lett. 81, 4458 (2002).

    Article  ADS  Google Scholar 

  8. F. Matteini, V. G. Dubrovskii, D. Rüffer, G. Tütüncüoglu, Y. Fontana, and A. Fontcuberta i Morral, Nanotechnology 26, 105603 (2015).

    Article  ADS  Google Scholar 

  9. J. Vukajlovic-Plestina, V. G. Dubrovskii, G. Tütüncüoglu, H. Potts, R. Ricca, F. Meyer, F. Matteini, J.-B. Leran, and A. Fontcuberta i Morral, Nanotechnology 27, 455601 (2016).

    Article  ADS  Google Scholar 

  10. M. Law, L. E. Greene, A. Radenovic, T. Kuykendall, J. Liphardt, and P. Yang, J. Phys. Chem. B 110, 22652 (2006).

    Article  Google Scholar 

  11. G. M. Cohen, M. J. Rooks, J. O. Chu, S. E. Laux, P. M. Solomon, J. A. Ott, R. J. Miller, and W. Haensch, Appl. Phys. Lett. 90, 233110 (2007).

    Article  ADS  Google Scholar 

  12. S. Arab, M. Yao, C. Zhou, P. D. Dapkus, and S. B. Cronin, Appl. Phys. Lett. 108, 182106 (2016).

    Article  ADS  Google Scholar 

  13. C. Blömers, T. Grap, M. I. Lepsa, J. Moers, St. Trellenkamp, D. Grutzmacher, H. Luth, and Th. Schapers, Appl. Phys. Lett. 101, 152106 (2012).

    Article  ADS  Google Scholar 

  14. E. Dimakis, M. Ramsteiner, A. Tahraoui, H. Riechert, and L. Geelhaar, Nano Res. 5, 796 (2012).

    Article  Google Scholar 

  15. A. Darbandi, J. C. McNeil, A. Akhtari-Zavareh, S. P. Watkins, and K. L. Kavanagh, Nano Lett. 16, 3982 (2016).

    Article  ADS  Google Scholar 

  16. A. C. E. Chia, N. Dhindsa, J. P. Boulanger, B. A. Wood, S. S. Saini, and R. R. LaPierre, J. Appl. Phys. 118, 114306 (2015).

    Article  ADS  Google Scholar 

  17. S. Colombo, D. Spirkoska, M. Frimmer, G. Abstreiter, and A. Fontcuberta i Morral, Phys. Rev. B 77, 155326 (2008).

    Article  ADS  Google Scholar 

  18. V. G. Dubrovskii, G. E. Cirlin, N. V. Sibirev, F. Jabeen, J. C. Harmand, and P. Werner, Nano Lett. 11, 1247 (2011).

    Article  ADS  Google Scholar 

  19. S. Plissard, K. A. Dick, G. Larrieu, S. Godey, A. Addad, X. Wallart, and P. Caroff, Nanotechnology 21, 385602 (2010).

    Article  ADS  Google Scholar 

  20. J. G. Connell, K. Yoon, D. E. Perea, E. J. Schwalbach, P. W. Voorhees, and L. J. Lauhon, Nano Lett. 13, 199 (2013).

    Article  ADS  Google Scholar 

  21. E. Koren, N. Berkovitch, and Y. Rosenwaks, Nano Lett. 10, 1163 (2010).

    Article  ADS  Google Scholar 

  22. W. Chen, V. G. Dubrovskii, X. Liu, T. Xu, R. Larde, J. P. Nys, B. Grandidier, D. Stievenard, G. Patriarche, and P. Pareige, J. Appl. Phys. 111, 094909 (2012).

    Article  ADS  Google Scholar 

  23. V. G. Dubrovskii, Cryst. Growth Des. 15, 5738 (2015).

    Article  Google Scholar 

  24. V. G. Dubrovskii, I. V. Shtrom, R. R. Reznik, Yu. B. Samsonenko, A. I. Khrebtov, I. P. Soshnikov, S. Rouvimov, N. Akopian, T. Kasama, and G. E. Cirlin, Cryst. Growth Des. 16, 7251 (2016).

    Article  Google Scholar 

  25. G. E. Cirlin, V. G. Dubrovski, N. V. Sibirev, I. P. Soshnikov, Yu. B. Samsonenko, A. A. Tonkikh, and V.M. Ustinov, Semiconductors 39, 557 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Dubrovskii.

Additional information

Original Russian Text © E.D. Leshchenko, V.G. Dubrovskii, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 11, pp. 1480–1483.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leshchenko, E.D., Dubrovskii, V.G. Inhomogeneous dopant distribution in III–V nanowires. Semiconductors 51, 1427–1430 (2017). https://doi.org/10.1134/S1063782617110173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782617110173

Navigation