Skip to main content
Log in

Model of selective growth of III–V nanowires

  • Published:
Technical Physics Letters Aims and scope Submit manuscript

Abstract

A kinetic model of growth of nanowires of III–V semiconductor compounds (including nitride ones) in the absence of metal catalyst is proposed; these conditions correspond to the methods of selective epitaxy or self-induced growth. A stationary solution for the nanowire growth rate is obtained, which indicates that the growth can be limited by not only the kinetics of III-group element with allowance for the surface diffusion (as was suggested earlier), but also the flow of the V-group element. Different modes are characterized by radically different dependences of the growth rate on the nanowire radius. Under arsenicenriched conditions, a typical dependence with a maximum and decay at large radii (limited by the gallium adatom diffusion) is observed. Under gallium-enriched conditions, there is a transition to the growth rate that is practically independent of the radius and linearly increases with an increase in the arsenic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Hamano, H. Hirayama, and Y. Aoyagi, Jpn. J. Appl. Phys., Part 2 36, L286 (1997).

    Article  ADS  Google Scholar 

  2. M. Akabori, J. Takeda, J. Motohisa, et al., Nanotechnology 14, 1071 (2003).

    Article  ADS  Google Scholar 

  3. J. Noborisaka, J. Motohisa, and T. Fukui, Appl. Phys. Lett. 86, 213102 (2005).

    Article  ADS  Google Scholar 

  4. P. J. Poole, J. Lefebvre, and J. Fraser, Appl. Phys. Lett. 83, 2055 (2005).

    Article  ADS  Google Scholar 

  5. Q. Gao, D. Saxena, F. Wang, et al., Nano Lett. 14, 5206 (2014).

    Article  Google Scholar 

  6. E. Galopin, L. Largeau, G. Patriarche, et al., Nanotecnology 22, 245606 (2011).

    Article  ADS  Google Scholar 

  7. V. Consonni, V. G. Dubrovskii, A. Trampert, et al., Phys. Rev. B 85, 155313 (2012).

    Article  ADS  Google Scholar 

  8. V. G. Dubrovskii, V. Consonni, A. Trampert, et al., Phys. Rev. B 85, 165317 (2012).

    Article  ADS  Google Scholar 

  9. V. G. Dubrovskii, V. Consonni, L. Geelhaar, et al., Appl. Phys. Lett. 100, 153101 (2012).

    Article  ADS  Google Scholar 

  10. K. W. Ng, W. S. Ko, D. T. T. Tran, et al., ACS Nano 7, 100 (2013).

    Article  Google Scholar 

  11. V. G. Dubrovskii, N. V. Sibirev, X. Zhang, et al., Cryst. Growth Des. 10, 3949 (2010).

    Article  Google Scholar 

  12. G. E. Cirlin, V. G. Dubrovskii, N. V. Sibirev, I. P. Soshnikov, Yu. B. Samsonenko, A. A. Tonkikh, and V. M. Ustinov, Semiconductors 39, 557 (2005).

    Article  ADS  Google Scholar 

  13. V. G. Dubrovskii, I. P. Soshnikov, G. E. Cirlin, et al., Phys. Status Solidi B 241, R30 (2004).

    Article  ADS  Google Scholar 

  14. N. V. Sibirev, M. A. Timofeeva, A. D. Bol’shakov, et al., Phys. Solid State 52, 1531 (2010).

    Article  ADS  Google Scholar 

  15. G. Priante, S. Ambrosini, V. G. Dubrovskii, et al., Cryst. Growth Des. 13, 3976 (2013).

    Article  Google Scholar 

  16. V. G. Dubrovskii, Appl. Phys. Lett. 104, 053110 (2014).

    Article  ADS  Google Scholar 

  17. S. A. Kukushkin and A. V. Osipov, Prog. Surf. Sci. 51, 1 (1996).

    Article  ADS  Google Scholar 

  18. V. G. Dubrovskii, Phys. Status Solidi B 171, 345 (1992).

    Article  ADS  Google Scholar 

  19. E. Gil, V. G. Dubrovskii, G. Avit, et al., Nano Lett. 14, 3938 (2014).

    Article  ADS  Google Scholar 

  20. V. G. Dubrovskii, Phys. Rev. B 87, 195426 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Dubrovskii.

Additional information

Original Russian Text © V.G. Dubrovskii, 2015, published in Pis’ma v Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 41, No. 23, pp. 49–53.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubrovskii, V.G. Model of selective growth of III–V nanowires. Tech. Phys. Lett. 41, 1136–1138 (2015). https://doi.org/10.1134/S1063785015120044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063785015120044

Keywords

Navigation