Skip to main content
Log in

Interdiffusion and phase formation in the Fe–TiO2 thin-film system

  • Surfaces, Interfaces, and Thin Films
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The interaction of magnetron-sputtered metal iron with titanium-oxide films upon isothermal vacuum annealing is studied by X-ray phase analysis, secondary-ion mass spectrometry, atomic-force microscopy, and mathematical simulation. A mechanism for the formation of complex oxides at grain boundaries is suggested. The mechanism is based on the reaction diffusion of metal iron into titanium oxide. A quantitative model of reaction interdiffusion in two-layer polycrystalline metal–oxide film systems with limited component solubility is developed. From numerical analysis of the experimental distributions of the metal concentrations in the Fe–TiO2 film system, the individual diffusion coefficients are determined. It is found that, under the conditions of vacuum annealing at 1073 K, the diffusion coefficients of iron and titanium are 8.0 × 10–13 and 3.0 × 10–15 cm2 s–1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. O. Carneiro, V. Teixeira, A. Portinha, A. Magalhaes, P. Countinho, and C. J. Tavares, Mater. Sci. Eng. B 138, 144 (2007).

    Article  Google Scholar 

  2. Meng Ni, M. K. H. Leung, D. Y. C. Leung, and K. Sumathy, Renew. Sustainable Energy Rev. 11, 401 (2007).

    Article  Google Scholar 

  3. K. Zakrzewska, M. Radeska, and M. Rekas, Thin Solid Films 310, 161 (1997).

    Article  ADS  Google Scholar 

  4. N. I. Al-Salim, S. A. Bagshaw, A. Bittar, T. Kemmitt, A. J. McQuillan, A. M. Mills, and M. J. Ryan, J. Mater. Chem. 10, 2358 (2000).

    Article  Google Scholar 

  5. S. Sooda, A. Umarb, S. K. Mehtaa, and S. K. Kansald, J. Colloid Interface Sci. 450, 213 (2015).

    Article  ADS  Google Scholar 

  6. P. Jianga, W. Xianga, J. Kuanga, W. Liu, and W. Cao, Solid State Sci. 46, 27 (2015).

    Article  ADS  Google Scholar 

  7. Hsin-yu Lin and Cheng-yao Shih, J. Mol. Catal. A: Chem. 411, 128 (2016).

    Article  Google Scholar 

  8. F. B. Lia, X. Z. Lia, and M. F. Houb, Appl. Catal. B 48, 185 (2004).

    Article  Google Scholar 

  9. H. Eskandarloo, A. Badiei, M. A. Behnajady, and G. M. Ziarani, Ultrason. Sonochem. 26, 281 (2015).

    Article  Google Scholar 

  10. I. Ganesh, P. P. Kumar, A. K. Gupta, P. S. C. Sekhar, K. Radha, G. Padmanabham, and G. Sundararajan, Proc. Appl. Ceram. 6, 21 (2012).

    Article  Google Scholar 

  11. R. A. Briggs and A. Sacco, Metall. Trans. A 24, 1257 (1993).

    Article  Google Scholar 

  12. M. Crişana, N. Drăgana, D. Crişana, A. Ianculescub, I. Niţoic, P. Oancead, L. Todana, C. Stana, and N. Stănicăa, Ceram. Int. 42, 3088 (2016).

    Article  Google Scholar 

  13. Huey-Jiuan Lina, Tien-Syh Yanga, Chi-Shiung Hsia, Moo-Chin Wangb, and Kuen-Chan Leeb, Ceram. Int. 40, 10633 (2014).

    Article  Google Scholar 

  14. A. Sobczyk-Guzendaa, S. Owczareka, H. Szymanowskia, L. Voleskyb, B. Walkowiaka, S. Miszczaka, and M. Gazicki-Lipmana, Ceram. Int. 41, 7496 (2015).

    Article  Google Scholar 

  15. R. Dholam, N. Patel, M. Adami, and A. Miotello, Int. J. Hydrogen Energy 34, 5337 (2009).

    Article  Google Scholar 

  16. C. Silva, A. R. G. Costa, R. C. da Silva, L. C. Alves, L. P. Ferreira, M. D. Carvalho, N. Franco, M. Godinho, and M. M. Cruz, J. Magn. Magn. Mater. 364, 106 (2014).

    Article  ADS  Google Scholar 

  17. V. S. Rusakov, I. A. Sukhorukov, A. M. Zhankadamova, and K. K. Kadyrzhanov, Mosc. Univ. Phys. Bull. 67, 263 (2012).

    Article  ADS  Google Scholar 

  18. JCPDS—International Centre for Diffraction Data (2012).

  19. D. Cordischi, N. Burriesci, F. D’Alba, M. Petrera, G. Polizzoti, and M. Schiavello, J. Solid State Chem. 56, 182 (1985).

    Article  ADS  Google Scholar 

  20. A. D. Smigelskas and E. O. Kirkendall, Trans. AIME 171, 130 (1947).

    Google Scholar 

  21. L. S. Darken, Trans. AMIE 175, 184 (1948).

    Google Scholar 

  22. K. P. Gurov, B. A. Kartashkin, and Yu. E. Ugaste, Interdiffusion in Multiphase Metallic Systems (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  23. N. S. Kulkarni, R. J. Bruce Warmack, B. Radhakrishnan, J. L. Hunter, Y. Sohn, K. R. Coffey, G. E. Murch, and I. V. Belova, J. Phase Equilib. Diffusion 35, 762 (2014).

    Article  Google Scholar 

  24. O. V. Aleksandrov and V. V. Kozlovski, Semiconductors 43, 885 (2009).

    Article  ADS  Google Scholar 

  25. A. A. Samarskii, Theory of Differential Schemes (Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Afonin.

Additional information

Original Russian Text © N.N. Afonin, V.A. Logacheva, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 10, pp. 1351–1356.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonin, N.N., Logacheva, V.A. Interdiffusion and phase formation in the Fe–TiO2 thin-film system. Semiconductors 51, 1300–1305 (2017). https://doi.org/10.1134/S1063782617100025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782617100025

Navigation