Skip to main content
Log in

Anodic processes in the chemical and electrochemical etching of Si crystals in acid-fluoride solutions: Pore formation mechanism

  • Microcrystalline, Nanocrystalline, Porous, and Composite Semiconductors
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The interaction of heavily doped p- and n-type Si crystals with hydrofluoric acid in the dark with and without contact with metals having greatly differing work functions (Ag and Pd) is studied. The dependences of the dissolution rates of Si crystals in HF solutions that contain oxidizing agents with different redox potentials (FeCl3, V2O5 and CrO3) on the type and level of silicon doping are determined. Analysis of the experimental data suggests that valence-band holes in silicon are not directly involved in the anodic reactions of silicon oxidation and dissolution and their generation in crystals does not limit the rate of these processes. It is also shown that the character and rate of the chemical process leading to silicon dissolution in HF-containing electrolytes are determined by the interfacial potential attained at the semiconductor–electrolyte interface. The mechanism of electrochemical pore formation in silicon crystals is discussed in terms of selfconsistent cooperative reactions of nucleophilic substitution between chemisorbed fluorine anions and coordination- saturated silicon atoms in the crystal subsurface layer. A specific feature of these reactions for silicon crystals is that vacant nonbonding d 2 sp 3 orbitals of Si atoms, associated with sixfold degenerate states corresponding to the Δ valley of the conduction band, are involved in the formation of intermediate complexes. According to the suggested model, the pore-formation process spontaneously develops in local regions of the interface under the action of the interfacial potential in the adsorption layer and occurs as a result of the detachment of (SiF2) n polymer chains from the crystal. Just this process leads to the preferential propagation of pores along the <100> crystallographic directions. The thermodynamic aspects of pore nucleation and the effect of the potential drop across the interface, conduction type, and free-carrier concentration in the crystal on the pore size and structure are discussed. The concepts developed in the study can consistently account for experimental facts characterizing the etching of silicon crystals with various electrical parameters under various conditions providing the anodic polarization of crystals in HF-containing solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Volance, Phys. Rev. B 55, 9706 (1997).

    Article  ADS  Google Scholar 

  2. M. Rausches and H. Spohn, Phys. Rev. E 64, 031604 (2001).

    Article  ADS  Google Scholar 

  3. Xiaoge Gregory Zhang, Electrochemistry of Silicon and ItsOxide (KluwerAcademic, New York, Boston, Dordrecht, London, Moscow, 2004).

    Google Scholar 

  4. V. Lehman, R. Stengl, and A. Luigart, Mater. Sci. Eng. B 69–70, 11 (2001).

    Google Scholar 

  5. J. Carstensen, R. Prange, G. S. Popkirov, and H. Foll, Appl. Phys. A 67, 459 (1998).

    Article  ADS  Google Scholar 

  6. M. I. J. Beale, N. G. Chew, M. J. Uren, A. G. Cullis, and J. D. Benjamin, Appl. Phys. Lett. 46, 1095 (1985).

    Article  Google Scholar 

  7. O. Bisi, S. Ossicini, and L. Pavesi, Surf. Sci. Rep. 38, 1 (2000).

    Article  ADS  Google Scholar 

  8. D. R. Turner, J. Electrochem. Soc. 107, 810 (1960)

    Article  Google Scholar 

  9. D. R. Turner, J. Electrochem. Soc. 105, 402 (1958).

    Article  Google Scholar 

  10. R. Memming and G. Schwandt, Surf. Sci. 4, 109 (1966).

    Article  ADS  Google Scholar 

  11. P. Allongue, V. Kieling, and H. Gerischer, Electrochim. Acta 40, 1353 (1995).

    Article  Google Scholar 

  12. K. W. Kolasinski, Phys. Chem. Chem. Phys. 5, 1270 (2003).

    Article  Google Scholar 

  13. K. W. Kolasinski, Surf. Sci. 603, 1904 (2009).

    Article  ADS  Google Scholar 

  14. K. W. Kolasinski, J. W. Gogola, and W. B. Barclay, J. Phys. Chem. C 116, 21472 (2012).

    Article  Google Scholar 

  15. V. P. Ulin and S. G. Konnikov, Semiconductors 41, 832 (2007).

    Article  ADS  Google Scholar 

  16. V. P. Ulin and S. G. Konnikov, Semiconductors 41, 845 (2007).

    Article  ADS  Google Scholar 

  17. Yu. Ya. Gurevich and Yu. Ya. Pleskov, Photoelectrochemistry of Semiconductors (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  18. Comprehensive Organic Chemistry, Vol. 6: Compounds of Selenium, Tellurium, Silicon, and Boron, Ed. by D. Burton and W. D. Ollis (Pergamon, Oxford, 1991; Khimiya, Moscow, 1984).

  19. J.-M. Jancu, R. Scholz, F. Beltram, and F. Bassani, Phys. Rev. B 57, 6493 (1998).

    Article  ADS  Google Scholar 

  20. G. Mariotto, F. Ziglio, and F. L. Freire, J. Non-Cryst. Sol. 192–193, 253 (1995).

    Article  Google Scholar 

  21. M. I. J. Beale, J. D. Benjamin, M. J. Uren, N. G. Chew, and A. G. Cullis, J. Cryst. Growth 73, 622 (1985).

    Article  ADS  Google Scholar 

  22. V. Lehmann, R. Stengl, and A. Luigart, Mater. Sci. Eng. B 69, 11 (2000).

    Article  Google Scholar 

  23. V. Lehmann and U. Gosele, Adv. Mater. 4, 114 (1992).

    Article  Google Scholar 

  24. E. K. Propst and P. A. Kohl, J. Electrochem. Soc. 141, 1006 (1994).

    Article  Google Scholar 

  25. K. W. Kolasinski, Nanoscale Res. Lett. 9, 432 (2014).

    Article  ADS  Google Scholar 

  26. G. V. Gadiyak and Yu. N. Morokov, Semiconductors 27, 401 (1993).

    ADS  Google Scholar 

  27. A. Halimaoui, in Properties of Porous Silicon, Ed. by L. T. Canham (IEE INSPEC, Inst. Electr. Eng., London, 1997), p. 12.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Yu. Soldatenkov.

Additional information

Original Russian Text © V.P. Ulin, N.V. Ulin, F.Yu. Soldatenkov, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 4, pp. 481–496.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ulin, V.P., Ulin, N.V. & Soldatenkov, F.Y. Anodic processes in the chemical and electrochemical etching of Si crystals in acid-fluoride solutions: Pore formation mechanism. Semiconductors 51, 458–472 (2017). https://doi.org/10.1134/S1063782617040212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782617040212

Navigation