Skip to main content
Log in

Energy spectrum and thermal properties of a terahertz quantum-cascade laser based on the resonant-phonon depopulation scheme

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The dependences of the electronic-level positions and transition oscillator strengths on an applied electric field are studied for a terahertz quantum-cascade laser (THz QCL) with the resonant-phonon depopulation scheme, based on a cascade consisting of three quantum wells. The electric-field strengths for two characteristic states of the THz QCL under study are calculated: (i) “parasitic” current flow in the structure when the lasing threshold has not yet been reached; (ii) the lasing threshold is reached. Heat-transfer processes in the THz QCL under study are simulated to determine the optimum supply and cooling conditions. The conditions of thermocompression bonding of the laser ridge stripe with an n +-GaAs conductive substrate based on Au–Au are selected to produce a mechanically stronger contact with a higher thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Electron. Lett. 42, 89 (2006).

    Article  Google Scholar 

  2. L. H. Li, L. Chen, J. X. Zhu, J. Freeeman, P. Dean, A. Valavanis, A. G. Davies, and E. H. Linfield, Electron. Lett. 50, 309 (2014).

    Article  Google Scholar 

  3. J. R. Gao, J. N. Hovenier, Z. Q. Yang, J. J. A. Baselmans, A. Baryshev, M. Hajenius, T. M. Klapwijk, A. J. L. Adam, T. O. Klaassen, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 86, 244104 (2005).

    Article  ADS  Google Scholar 

  4. Q. Qin, J. L. Reno, and Q. Hu, Opt. Lett. 36, 692 (2011).

    Article  ADS  Google Scholar 

  5. D. Burghoff, T. Y. Kao, N. Han, C. W. I. Chan, X. Cai, Y. Yang, D. J. Hayton, J. R. Gao, J. L. Reno, and Q. Hu, Nat. Photon. 8, 462 (2014).

    Article  ADS  Google Scholar 

  6. H. Li, P. Laffaille, D. Gacemi, M. Apfel, C. Sirtori, J. Leonardon, G. Santarelli, M. Rösch, G. Scalari, M. Beck, J. Faist, W. Hänsel, R. Holzwarth, and S. Barbieri, Opt. Express 23, 33270 (2015).

    Article  ADS  Google Scholar 

  7. R. R. Galiev, A. E. Yachmenev, A. S. Bugaev, G. B. Galiev, Yu. V. Fedorov, E. A. Klimov, R. A. Khabibullin, D. S. Ponomarev, and P. P. Maltsev, Bull. Russ. Acad. Sci.: Phys. 80, 476 (2016).

    Article  Google Scholar 

  8. D. V. Lavrukhin, A. E. Yachmenev, R. R. Galiev, A. S. Bugaev, Y. V. Fedorov, R. A. Khabibullin, D. S. Ponomarev, and P. P. Maltsev, Int. J. High Speed Electron. Syst. 24, 1520001 (2015).

    Article  Google Scholar 

  9. M. A. Belkin, Q. J. Wang, C. Pflugl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, and F. Capasso, IEEE J. Sel. Top. Quantum Electron. 15, 952 (2009).

    Article  Google Scholar 

  10. Y. Chassagneux, Q. J. Wang, S. P. Khanna, E. Strupiechonski, J. R. Coudevylle, E. H. Linfield, A. G. Davies, F. Capasso, M. A. Belkin, and R. Colombelli, IEEE Trans. Terahertz Sci. Technol. 2, 83 (2012).

    Article  ADS  Google Scholar 

  11. M. A. Belkin and F. Capasso, Phys. Scripta 90, 118002 (2015).

    Article  ADS  Google Scholar 

  12. R. Köhler, A. Tredicucci, F. Beltram, H. E. Beere, E. H. Linfield, A. G. Davies, D. A. Ritchie, R. C. Iotti, and F. Rossi, Nature 417, 156 (2002).

    Article  ADS  Google Scholar 

  13. S. Fathololoumi, E. Dupont, C. W. I. Chan, Z. R.Wasilewski, S. R. Laframboise, D. Ban, A. Matyas, C. Jirauschek, Q. Hu, and H. C. Liu, Opt. Express 20, 3866 (2012).

    Article  ADS  Google Scholar 

  14. C. A. Evans, D. Indjin, Z. Ikonic, P. Harrison, M. S. Vitiello, V. Spagnolo, and G. Scamarcio, IEEE J. Quantum Electron. 44, 680 (2008).

    Article  ADS  Google Scholar 

  15. S. Kumar, B. S. Williams, S. Kohen, Q. Hu, and J. L. Reno, Appl. Phys. Lett. 84, 2494 (2004).

    Article  ADS  Google Scholar 

  16. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Opt. Express 13, 3331 (2005).

    Article  ADS  Google Scholar 

  17. A. E. Zhukov, G. E. Cirlin, R. R. Reznik, Yu. B. Samsonenko, A. I. Khrebtov, M. A. Kaliteevski, K. A. Ivanov, N. V. Kryzhanovskaya, M. V. Maximov, and Zh. I. Alferov, Semiconductors 50, 662 (2016).

    Article  ADS  Google Scholar 

  18. R. A. Khabibullin, N. V. Shchavruk, A. Yu. Pavlov, D. S. Ponomarev, K. N. Tomosh, R. R. Galiev, P. P.Maltsev, A. E. Zhukov, G. E. Cirlin, F. I. Zubov, and Zh. I. Alferov, Semiconductors 50, 1377 (2016).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Khabibullin.

Additional information

Original Russian Text © R.A. Khabibullin, N.V. Shchavruk, A.N. Klochkov, I.A. Glinskiy, N.V. Zenchenko, D.S. Ponomarev, P.P. Maltsev, A.A. Zaycev, F.I. Zubov, A.E. Zhukov, G.E. Cirlin, Zh.I. Alferov, 2017, published in Fizika i Tekhnika Poluprovodnikov, 2017, Vol. 51, No. 4, pp. 540–546.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khabibullin, R.A., Shchavruk, N.V., Klochkov, A.N. et al. Energy spectrum and thermal properties of a terahertz quantum-cascade laser based on the resonant-phonon depopulation scheme. Semiconductors 51, 514–519 (2017). https://doi.org/10.1134/S106378261704008X

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378261704008X

Navigation