Advertisement

Semiconductors

, Volume 50, Issue 13, pp 1753–1758 | Cite as

Study of the structure and composition of the strained epitaxial layer in the InAlAs/GaAs(100) heterostructure by transmission electron microscopy

  • M. V. LovyginEmail author
  • N. I. Borgardt
  • A. S. Bugaev
  • R. L. Volkov
  • M. Seibt
Methods and Technique of Measurements
  • 27 Downloads

Abstract

The results of electron microscopy studies of an epitaxial InAlAs layer on a GaAs(100) substrate are reported. It is established that there exist misfit dislocations at the interface between the materials and there are residual strains distorting the lattice in the layer. From the measurements of lattice parameters in the directions parallel and orthogonal to the growth direction away from misfit dislocations, the local nominal lattice parameter of the layer is calculated and the relative content of indium is determined.

Keywords

gallium arsenide indium aluminum arsenide molecular beam epitaxy misfit dislocations tetragonal distortion transmission electron microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. N. Jmerik, A. M. Mizerov, T. V. Shubina, A. V. Sakharov, A. A. Sitnikova, P. S. Kop’ev, S. V. Ivanov, E. V. Lutsenko, A. V. Danilchyk, N. V. Rzheutskii, and G. P. Yablonskii, Semiconductors 42, 1420 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    J. Motohisa, K. Tomioka, B. Hua, et al., in Advances in III–V Semiconductor Nanowires and Nanodevices, Ed. by J. Li, D. Wang, and R. R. LaPierre (Bentham Science, 2011), p.178.Google Scholar
  3. 3.
    Z. I. Alferov, V. M. Andreev, and V. D. Rumyantsev, in High-Efficient Low-Cost Photovoltaics. Recent Developments, Ed. by V. Petrova-Koch, R. Hezel, and A. Goetzberg (Berlin, Springer, Heidelberg, 2009), p.225.Google Scholar
  4. 4.
    P. Periwal, N. V. Sibirev, G. Patriarche, et al., Nano Lett. 14, 5140 (2014).ADSCrossRefGoogle Scholar
  5. 5.
    Transmission Electron Microscopy Characterization of Nanomaterials, Ed. by C. S. S. R. Kumar (Springer, Berlin, Heidelberg, 2014), p.716.Google Scholar
  6. 6.
    M. V. Lovygin, N. I. Borgardt, I. P. Kazakov, and M. Zaibt, Semiconductors 49, 337 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    D. B. Williams and C. B. Carter, Transmission Electron Microscopy, A Textbook for Materials Science (Springer Science and Business Media, New York, 2009), p.832.Google Scholar
  8. 8.
    A. Rosenauer, Transmission Electron Microscopy of Semiconductor Nanostructures: Analysis of Composition and Strain State (Springer, Berlin, Heidelberg, 2003), p.238.Google Scholar
  9. 9.
    P. L. Galindo, S. Kret, A. M. Sanchez, et al., Ultramicroscopy 107, 1186 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • M. V. Lovygin
    • 1
    Email author
  • N. I. Borgardt
    • 1
  • A. S. Bugaev
    • 2
  • R. L. Volkov
    • 1
  • M. Seibt
    • 3
  1. 1.National Research University of Electronic Technology MIETZelenograd, MoscowRussia
  2. 2.Institute of Ultrahigh-Frequency Semiconductor ElectronicsRussian Academy of SciencesMoscowRussia
  3. 3.IV Physical InstituteGöttingen UniversityGottingenGermany

Personalised recommendations