Skip to main content
Log in

Germanium laser with a hybrid surface plasmon mode

  • XX International Symposium “Nanophysics and Nanoelectronics”, Nizhny Novgorod, March 14–18, 2016
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The possibility of creating an n ++-Ge laser with a hybrid surface plasmon TM mode is theoretically studied. The distribution of electromagnetic fields and the absorbance in the mode under study, the optical confinement factor, the gain, and the threshold current density in the laser under consideration are calculated. It is shown that the threshold current density at optimal layer thicknesses of an n ++-Ge laser with a hybrid surface plasmon TM mode can be 2–3 times lower than the experimentally observed threshold current density in an n ++-Ge laser with a conventional dielectric waveguide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, Nature 460, 1110 (2009).

    Article  ADS  Google Scholar 

  2. R.-M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, Nat. Matet. 10, 110 (2011).

    Article  ADS  Google Scholar 

  3. J. B. Khurgin and G. Sun, Appl. Phys. Lett. 100, 011105 (2012).

    Article  ADS  Google Scholar 

  4. D. Yu. Fedyanin and A. V. Arsenin, Opt. Express 19, 12 (524)(2011).

    Article  Google Scholar 

  5. E. Ozbay, Science 311, 189 (2006).

    Article  ADS  Google Scholar 

  6. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Nauka, Moscow, 1992; Pergamon, New York, 1984).

    Google Scholar 

  7. R. E. Camacho-Aguilera, Y. Cai, N. Patel, J. T. Bessette, M. Romagnoli, L. C. Kimerling, and J. Michel, Opt. Express 20, 11316 (2012).

    Article  ADS  Google Scholar 

  8. R. Koerner, M. Oehme, M. Gollhofer, M. Schmid, K. Kostecki, S. Bechler, D. Widmann, E. Kasper, and J. Schulze, Opt. Express 23, 14815 (2015).

    Article  ADS  Google Scholar 

  9. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1998).

    Google Scholar 

  10. H.-C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Appl. Phys. Lett. 75, 2909 (1999).

    Article  ADS  Google Scholar 

  11. J. Liu, X. Sun, D. Pan, X. Wang, L. C. Kimerling, T. L. Koch, and J. Michel, Opt. Express 15, 11272 (2007).

    Article  ADS  Google Scholar 

  12. R. F. Oulton, V. J. Sorger, D. A. Genov, D. F. P. Pile, and X. Zhang, Nat. Photon. 2, 496 (2008).

    Article  Google Scholar 

  13. V. Ya. Aleshkin, A. A. Dubinov, and V. Ryzhii, JETP Lett. 89, 63 (2009).

    Article  ADS  Google Scholar 

  14. A. A. Dubinov, JETP Lett. 97, 245 (2013).

    Article  ADS  Google Scholar 

  15. D. V. Yurasov, A. V. Antonov, M. N. Drozdov, V. B. Schmagin, K. E. Spirin, and A. V. Novikov, J. Appl. Phys. 118, 145701 (2015).

    Article  ADS  Google Scholar 

  16. A. V. Antonov, M. N. Drozdov, A. V. Novikov, and D. V. Yurasov, Semiconductors 49, 1405 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dubinov.

Additional information

Original Russian Text © A.A. Dubinov, 2016, published in Fizika i Tekhnika Poluprovodnikov, 2016, Vol. 50, No. 11, pp. 1469–1472.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinov, A.A. Germanium laser with a hybrid surface plasmon mode. Semiconductors 50, 1449–1452 (2016). https://doi.org/10.1134/S1063782616110099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616110099

Navigation