Skip to main content
Log in

On the formation of silicon nanoclusters ncl-Si in a hydrogenated amorphous silicon suboxide matrix a-SiO x :H (0 < x < 2) with time-modulated dc magnetron plasma

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Activation of the process of amorphous-silicon-nanocluster formation in a hydrogenated amorphous- silicon suboxide matrix with time-modulated dc discharge plasma is investigated. The plasma is modulated by repeatedly switching on and off a dc magnetron magnetic coil. It is demonstrated that the resulting self-induction effect leads eventually to an increase in the probability of collisions between discharge electrons and gaseous components. The infrared (IR) spectra of the films showed that plasma modulation enhances predominantly the content of bridging oxygen in the a-SiO x :H matrix by strengthening the oxygenionization process. It is assumed that this also increases the concentration of silicon nanoclusters ncl-Si with an oxidized outer surface in the plasma and, thus, enhances the ncl-Si flux toward the electrodes of the dc magnetron. The photoluminescence spectra include two broad overlapping bands characteristic of amorphous ncl-Si with maxima in the range of 600–1000 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (Fizmatgiz, Moscow, 2007) [in Russian].

    Google Scholar 

  2. I. P. Suzdalev, Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures and Nanomaterials (Librokom, Moscow, 2009) [in Russian].

    Google Scholar 

  3. I. P. Suzdalev, Khim. Fiz. 22, 69 (2003).

    Google Scholar 

  4. O. B. Gusev, A. N. Poddubnyi, A. A. Prokof’ev, and I. N. Yassievich, Semiconductors 47, 183 (2013).

    Article  ADS  Google Scholar 

  5. D. Guzman, U. Corona, and M. Cruz, J. Luminesc. 102–103, 487 (2003).

    Article  Google Scholar 

  6. F. Fogarassy, A. Slaoui, and M. Froment, Phys. Rev. B 37, 6468 (1988).

    Article  ADS  Google Scholar 

  7. H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, and T. Nakagiri, Appl. Phys. Lett. 56, 2379 (1990).

    Article  ADS  Google Scholar 

  8. Y. Rui, D. Chen, J. Xu, Y. Zhang, L. Yang, J. Mei, Z. Ma, Z. Cen, W. Li, L. Xu, X. Huang, and K. Chen, J. Appl. Phys. 98, 033532 (2005).

    Article  ADS  Google Scholar 

  9. R. N. Carlile, S. Geha, J. F. O’Hanlon, and J. C. Stewart, Appl. Phys. Lett. 59, 1167 (1991).

    Article  ADS  Google Scholar 

  10. B. Drevillon, J. Perrin, J. M. Siefert, J. Huc, A. Lioret, G. de Rosny, and P. M. Schmitt, Appl. Phys. Lett. 42, 801 (1983).

    Article  ADS  Google Scholar 

  11. T. T. Korchagina, D. V. Marin, V. A. Volodin, A. A. Popov, and M. Vergnat, Semiconductors 43, 1514 (2009).

    Article  ADS  Google Scholar 

  12. L. Boufendi, J. Hermann, A. Bouchoule, B. Dubreuli, S. Stoffele, W. W. Stoffels, and M. L. de Giorgi, J. Appl. Phys. 76, 148 (1994).

    Article  ADS  Google Scholar 

  13. D. M. Tanenbaum, A. L. Laracuente, and A. Gallagher, Appl. Phys. Lett. 68, 1705 (1996).

    Article  ADS  Google Scholar 

  14. Y. Watanabe and M. Shiratani, Jpn. J. Appl. Phys. 32, 3074 (1993).

    Article  ADS  Google Scholar 

  15. S. J. Choi and M. J. Kushner, J. Appl. Phys. 74, 853 (1993).

    Article  ADS  Google Scholar 

  16. M. A. Olevanov, Yu. A. Mankelevich, and T. V. Rakhimova, J. Exp. Theor. Phys. 98, 287 (2004).

    Article  ADS  Google Scholar 

  17. Ch. Hollenstein, J. L. Dorier, J. Dutta, L. Sansonnens, and A. A. Howling, Plasma Sources Sci. Technol. 3, 278 (1994).

    Article  ADS  Google Scholar 

  18. M. A. Olevanov, Yu. A. Mankelevich, and T. V. Rakhimova, J. Exp. Theor. Phys. 96, 444 (2003).

    Article  ADS  Google Scholar 

  19. B. S. Danilin and V. K. Syrchin, Magnetron Sputtering Systems (Radio Svyaz’, Moscow, 1982) [in Russian].

    Google Scholar 

  20. L. Boufendi, M. Ch. Jouanny, E. Kovacevic, J. Berndt, and M. M. Kikian, J. Phys. D: Appl. Phys. 44, 174035 (2011).

    Article  ADS  Google Scholar 

  21. L. Couëdel, M. M. Mikikian, L. Boufendi, and A. A. Samarian, Phys. Rev. E 74, 026403 (2006).

    Article  ADS  Google Scholar 

  22. L. Couëdel, A. A. Samarian, M. Mikikian, and L. Boufendi, Phys. Plasmas 15, 063705 (2008).

    Article  ADS  Google Scholar 

  23. L. Boufendi, A. Plain, J. Ph. Blondean, A. Bouchoule, C. Laure, and M. Toogood, Appl. Phys. Lett. 60, 169 (1992).

    Article  ADS  Google Scholar 

  24. L. Boufendi, J. Hermann, A. Bouchoule, B. Dubreuli, E. Stoffels, W. W. Stoffels, and M. L. de Giorgi, J. Appl. Phys. 76, 148 (1994).

    Article  ADS  Google Scholar 

  25. L. Boufendi, J. Gaudin, S. Huet, G. Viera, and M. Dudemaine, Appl. Phys. Lett. 79, 4301 (2001).

    Article  ADS  Google Scholar 

  26. Ch. Hollenstein, A. A. Howling, C. Courteille, D. Magni, S. M. Scholz, G. M. W. Kroesen, N. Simons, W. de Zeeuw, and W. Schwarzenbach, J. Phys. D: Appl. Phys. 31, 74 (1998).

    Article  ADS  Google Scholar 

  27. G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, and W. Czubatyi, Phys. Rev. B 28, 3225 (1983).

    Article  ADS  Google Scholar 

  28. M. H. Brodsky, M. Cardona, and J. J. Guomo, Phys. Rev. B 16, 3556 (1977).

    Article  ADS  Google Scholar 

  29. J. C. Knights, R. A. Street, and G. Lucovsky, J. Non-Cryst. Sol. 35–36, 279 (1980).

    Article  Google Scholar 

  30. P. G. Pai, S. S. Chao, Y. Takagi, and G. Lucovsky, J. Vac. Sci. Technol. A 4, 689 (1986).

    Article  ADS  Google Scholar 

  31. G. Lucovsky, Solid State Commun. 29, 571 (1979).

    Article  ADS  Google Scholar 

  32. M. A. Paesler, D. A. Anderson, E. C. Freeman, G. Moddel, and W. Paul, Phys. Rev. Lett. 41, 1492 (1978).

    Article  ADS  Google Scholar 

  33. G. Lucovsky and W. B. Pollard, J. Vac. Sci. Technol. A 1, 313 (1983).

    Article  ADS  Google Scholar 

  34. D. V. Tsu, G. Lucovsky, and B. N. Davidson, Phys. Rev. B 40, 1795 (1989).

    Article  ADS  Google Scholar 

  35. F. L. Galeener and G. Lucovsky, Phys. Rev. Lett. 37, 55 (1970).

    Google Scholar 

  36. Y. Kanzawa, S. Hayashi, and K. Yamamoto, J. Phys.: Condens. Matter 8, 4823 (1996).

    ADS  Google Scholar 

  37. G. Lucovsky and J. E. Tyler, J. Non-Cryst. Sol. 75, 429 (1985).

    Article  ADS  Google Scholar 

  38. C. Biasotto, A. M. Dalrini, R. C. Teixeira, F. A. Bascoli, J. A. Diniz, S. A. Moshkalev, and I. Doi, J. Vac. Sci. Technol. B 25, 1166 (2007).

    Article  Google Scholar 

  39. L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, J. Appl. Phys. 87, 3829 (2000).

    Article  ADS  Google Scholar 

  40. R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, J. Appl. Phys. 52, 4241 (1981).

    Article  ADS  Google Scholar 

  41. W. D. A. M. de Boer, D. Timmerman, K. Dohnalova, I. N. Yassievich, H. Zhang, W. J. Buma, and T. Gregorkiewiecz, Nature Nanotechnol. 5, 878 (2010).

    Article  ADS  Google Scholar 

  42. M. P. Garrity, T. W. Peterson, and J. F. O’Hanlon, J. Vac. Sci. Technol. A 14, 550 (1996).

    Article  ADS  Google Scholar 

  43. L. Loeb, Fundamental Processes of Electrical Discharge in Gases (Wiley, New York, 1939).

    Google Scholar 

  44. T. Fukuzawa, S. Kushima, Y. Matsuoka, M. Shiratani, and Y. Watanabe, J. Appl. Phys. 86, 3543 (1999).

    Article  ADS  Google Scholar 

  45. A. Bouchoule, A. Plain, L. Boufendi, J. Ph. Blondeau, and C. Laure, J. Appl. Phys. 70, 1991 (1991).

    Article  ADS  Google Scholar 

  46. M. T. Swihart and S. L. Girshick, J. Phys. Chem. B 103, 64 (1999).

    Article  Google Scholar 

  47. K. Koga, Y. Matsuoka, K. Tanaka, M. Shiratani, and Y. Watanabe, Appl. Phys. Lett. 77, 196 (2000).

    Article  ADS  Google Scholar 

  48. G. Allan, C. Delerue, and M. Lannoo, Phys. Rev. Lett. 78, 3161 (1997).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Undalov.

Additional information

Original Russian Text © Yu.K. Undalov, E.I. Terukov, O.B. Gusev, I.N. Trapeznikova, 2016, published in Fizika i Tekhnika Poluprovodnikov, 2016, Vol. 50, No. 4, pp. 538–548.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Undalov, Y.K., Terukov, E.I., Gusev, O.B. et al. On the formation of silicon nanoclusters ncl-Si in a hydrogenated amorphous silicon suboxide matrix a-SiO x :H (0 < x < 2) with time-modulated dc magnetron plasma. Semiconductors 50, 530–540 (2016). https://doi.org/10.1134/S1063782616040230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782616040230

Navigation