Skip to main content
Log in

Structure and optical transmission spectra of ZnS–SiO2 nanocomposite films deposited at low temperatures

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The results of studying the growth of a ZnS–SiO2 nanocomposite film by discrete thermal evaporation at lowered condensation temperatures using an ultrahigh-vacuum setup are presented. It is shown that ZnS–SiO2 nanocomposite films contain an amorphous SiO2 matrix and zinc-sulfide ZnS nanocrystals. The nanocrystallite shape and sizes depend on the condensation temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Mu, D. Gu, and Z. Xu, Appl. Phys. A 80, 1425 (2005).

    Article  ADS  Google Scholar 

  2. V. G. Dubrovskii, Theoretical Principles of Semiconductor Nanotechnology, The School-Book (SPb. Gos. Univ., St.-Petersburg, 2006) [in Russian].

    Google Scholar 

  3. S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge Univ. Press, Cambridge, 1998).

    Book  Google Scholar 

  4. S. Nizamoglu, T. Qzel, E. Sari, and H. V. Demir, Nanotechnology 18, 709 (2007).

    Google Scholar 

  5. A. I. Ekimov, A. A. Onushchenko, A. G. Plyukhin, and Al. L. Efros, Sov. Phys. JETP 61, 891 (1985).

    Google Scholar 

  6. A. I. Ekimov, Al. L. Efros, and A. A. Onushchenco, Solid State Commun. 56, 921 (1985).

    Article  ADS  Google Scholar 

  7. A. I. Ekimov, Al. L. Efros, M. G. Ivanov, A. A. Onushchenco, and S. K. Shumilov, Solid State Commun. 69, 565 (1989).

    Article  ADS  Google Scholar 

  8. J. Allégre, G. Arnaud, H. Mathieu, P. Lefebvre, W. Granier, and L. Boudes, J. Cryst. Growth 138, 998 (1994).

    Article  ADS  Google Scholar 

  9. H. Mathieu, T. Richard, J. Allégre, P. Lefebvre, and G. Arnaud, J. Appl. Phys. 77, 287 (1995).

    Article  ADS  Google Scholar 

  10. M. C. Klein, F. Hache, D. Ricard, and C. Flytzanis, Phys. Rev. B 42, 123 (1990).

    Article  Google Scholar 

  11. T. Tokizaki, H. Akiyama, M. Takaya, and A. Nakamura, J. Cryst. Growth 117, 603 (1992).

    Article  ADS  Google Scholar 

  12. M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, Phys. Rev. Lett. 65, 1623 (1990).

    Article  ADS  Google Scholar 

  13. V. Esch, K. Kang, B. Fluegel, Y. Z. Hu, G. Khitrova, H. M. Gibbs, S. W. Koch, N. Peygambarian, L. C. Liu, and S. H. Risbud, Int. J. Nonlin. Opt. Phys. 1, 25 (1992).

    Article  Google Scholar 

  14. T. Rajh, O. I. MiIciIc, and A. J. Nozik, J. Phys. Chem. 97, 999 (1993).

    Article  Google Scholar 

  15. O. V. Salata, P. J. Dobson, P. J. Hull, and J. L. Hutchison, Appl. Phys. Lett. 65, 189 (1994).

    Article  ADS  Google Scholar 

  16. O. I. Mircirc, C. J. Curtis, K. M. Jones, J. R. Sprague, and A. J. Nozik, J. Phys. Chem. 98, 4966 (1994).

    Article  Google Scholar 

  17. V. A. Gaisin, S. V. Karpov, and S. V. Mikushev, Vestn. SPbGU, Ser. 4: Fiz., Khim. 2, 119 (2005).

    Google Scholar 

  18. P. Lefebvre, T. Richard, J. Allégre, H. Mathieu, A. Pradel, J. L. Marc, L. Boudes, W. Granier, and M. Ribes, Superlatt. Microstruct. 15, 447 (1994).

    Article  ADS  Google Scholar 

  19. S. Schuppler, S. L. Friedman, M. A. Marcus, D.L. Adler, Y.-H. Xie, F. M. Ross, T. D. Harris, W. L. Brown, Y. J. Chabal, L. E. Brus, and P. H. Citrin, Phys. Rev. Lett. 72, 2648 (1994).

    Article  ADS  Google Scholar 

  20. S. Schuppler, S. L. Freidman, M. A. Marcus, D.L.Adler, Y.-H. Xie, F. M. Ross, Y. J. Chabal, T. D. Harris, L. E. Brus, W. L. Brown, E. E. Chaban, P. F. Szajowski, S. B. Christman, and P. H. Citrin, Phys. Rev. B 25, 4910 (1995).

    Article  ADS  Google Scholar 

  21. S. H. Tolbert, A. B. Herhold, L. E. Brus, and A. P. Alivisatos, Phys. Rev. Lett. 76, 4384 (1996).

    Article  ADS  Google Scholar 

  22. R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994).

    Article  ADS  Google Scholar 

  23. Y. L. Soo, Z. H. Ming, S. W. Huang, Y. H. Kao, R. N. Bhargava, and D. Gallagher, Phys. Rev. B 50, 7602 (1994).

    Article  ADS  Google Scholar 

  24. T. A. Kennedy, E. R. Glaser, and P. B. Klein, Phys. Rev. B 52, 356 (1995).

    Article  Google Scholar 

  25. S.-D. Han, J.-D. Kim, K.-S. Myung, Y.-H. Lee, H. Yang, and K. C. Singh, Mater. Chem. Phys. 103, 89 (2007).

    Article  Google Scholar 

  26. V. G. Korsakov, M. M. Sychev, and V. V. Bakhmet’ev, Kondens. Sredy Mezhfaz. Granitsy 14 (1), 41 (2012).

    Google Scholar 

  27. P. N. Krylov, E. A. Romanov, and V. M. Vetoshkin, Vakuum. Tekh. Tekhnol. 18 (2), 75 (2008).

    Google Scholar 

  28. P. N. Krylov, E. A. Romanov, and I. V. Fedotova, Semiconductors 45, 125 (2011).

    Article  ADS  Google Scholar 

  29. Y. Su, L. Li, X. Liang, Q. Zhou, M. Gao, Y. Chen, and Y. Feng, Mater. Lett. 62, 3310 (2008).

    Article  Google Scholar 

  30. Y.-T. Nien, K.-H. Hwang, I.-G. Chen, and K. Yu, J. Alloys Comp. 455, 519 (2008).

    Article  Google Scholar 

  31. T. Kryshtab, V. S. Khomchenko, J. A. Andraca-Adame, L. V. Zavyalova, N. N. Roshchina, V. E. Rodionov, and V. B. Khachatryan, Thin Solid Films 515, 513 (2006).

    Article  ADS  Google Scholar 

  32. R. Thielsch, T. Böhme, and H. Böttcher, Phys. Status Solidi A 155, 157 (1996).

    Article  ADS  Google Scholar 

  33. Ya. S. Umanskii, Yu. A. Skakov, A. N. Ivanov, and L. N. Rastorguev, Crystallography, X-Ray Diffraction, Electronic Microscopy (Metallurgiya, Moscow, 1982), p. 632 [in Russian].

    Google Scholar 

  34. P. K. Ghosh, U. N. Maiti, S. Jana, and K. K. Chattopadhyay, Appl. Surf. Sci. 253, 1544 (2006).

    Article  ADS  Google Scholar 

  35. N. Taghavinia, H. Y. Lee, H. Makino, and T. Yao, Nanotechnology 16, 944 (2005).

    Article  ADS  Google Scholar 

  36. L. Brus, J. Phys. Chem. 90, 2555 (1986).

    Article  Google Scholar 

  37. I. M. Livshits, S. A. Gredeskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems (Wiley, New York, 1988; Nauka, Moscow, 1982), p. 360.

    Google Scholar 

  38. Ya. V. Kononets, L. I. Veligura, and O. A. Ostroukhova, Semiconductors 32, 491 (1998).

    Article  ADS  Google Scholar 

  39. N. K. Morozova, D. A. Mideros, and N. D. Danilevich, Semiconductors 43, 162 (2009).

    Article  ADS  Google Scholar 

  40. Kh. A. Toshkhodzhaev, S. N. Karimov, and M. Umarov, Dokl. AN Resp. Tadzhik. 51 (1), 34 (2008).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Krylov.

Additional information

Original Russian Text © P.N. Krylov, R.M. Zakirova, I.A. Knyazev, N.V. Kostenkov, E.A. Romanov, I.V. Fedotova, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 10, pp. 1371–1375.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylov, P.N., Zakirova, R.M., Knyazev, I.A. et al. Structure and optical transmission spectra of ZnS–SiO2 nanocomposite films deposited at low temperatures. Semiconductors 49, 1327–1331 (2015). https://doi.org/10.1134/S1063782615100115

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615100115

Keywords

Navigation