Skip to main content
Log in

Hopping transport in the space-charge region of p-n structures with InGaN/GaN QWs as a source of excess 1/f noise and efficiency droop in LEDs

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

It is shown that the emission efficiency and the 1/f noise level in light-emitting diodes with InGaN/GaN quantum wells correlate with how the differential resistance of a diode varies with increasing current. Analysis of the results shows that hopping transport via defect states across the n-type part of the space-charge region results in limitation of the current by the tunneling resistance at intermediate currents and shunting of the n-type barrier at high currents. The increase in the average number of tunneling electrons suppresses the 1/f current noise at intermediate currents. The strong growth in the density of current noise at high currents, S J J 3, is attributed to a decrease in the average number of tunneling electrons as the n-type barrier decreases in height and width with increasing forward bias. The tunneling-recombination leakage current along extended defects grows faster than the tunneling injection current, which leads to emission efficiency droop.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007).

    Article  ADS  Google Scholar 

  2. T. Mukai, M. Yamada, and S. Nakamura, Jpn. J. Appl. Phys. pt 1 38, 3976 (1999).

    Article  Google Scholar 

  3. N. I. Bochkareva, D. V. Tarkhin, Yu. T. Rebane, R. I. Gorbunov, Yu. S. Lelikov, I. A. Martynov, and Yu. G. Shreter, Semiconductors 41, 87 (2007).

    Article  ADS  Google Scholar 

  4. J. Hader, J. V. Moloney, and S. W. Koch, Appl. Phys. Lett. 96, 221106 (2010).

    Article  ADS  Google Scholar 

  5. T. J. Badcook, S. Hammersley, D. Watson-Parris, P. Dawson, M. J. Godfrey, M. J. Kappers, C. McAleese, R. A. Oliver, and C. J. Humphreys, Jpn. J. Appl. Phys. 52, 08JK10 (2013).

    Article  Google Scholar 

  6. J. Mickevi ius,_G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, and R. Gacka, Appl. Phys. Lett. 103, 011906 (2013).

    Article  ADS  Google Scholar 

  7. N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Yu. S. Lelikov, F. E. Latyshev, Yu. T. Rebane, A. I. Tsyuk, and Yu. G. Shreter, Semiconductors 44, 794 (2010).

    Article  ADS  Google Scholar 

  8. N. I. Bochkareva, Y. T. Rebane, and Y. G. Shreter, Appl. Phys. Lett. 103, 191101 (2013).

    Article  ADS  Google Scholar 

  9. I. A. Pope, P. M. Smowton, P. Blood, J. D. Thomson, M. J. Kappers, and C. J. Humphreys, Appl. Phys. Lett. 82, 2755 (2003).

    Article  ADS  Google Scholar 

  10. A. Hori, D. Yasunaga, A. Satake, and K. Fujiwara, Appl. Phys. Lett. 79, 3723 (2001).

    Article  ADS  Google Scholar 

  11. B. Monemar and B. E. Sernelius, Appl. Phys. Lett. 91, 181103 (2007).

    Article  ADS  Google Scholar 

  12. N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, Y. S. Lelikov, P. E. Latyshev, Y. T. Rebane, A. I. Tsyuk, and Y. G. Shreter, Appl. Phys. Lett. 96, 133502 (2010).

    Article  ADS  Google Scholar 

  13. H. C. Casey, Jr., J. Muth, S. Krishnankutty, and J. M. Zavada, Appl. Phys. Lett. 68, 2867 (1996).

    Article  ADS  Google Scholar 

  14. P. Perlin, M. Osinski, P. G. Eliseev, V. A. Smagley, J. Mu, M. Banas, and P. Sartori, Appl. Phys. Lett. 69, 1680 (1996).

    Article  ADS  Google Scholar 

  15. N. I. Bochkareva, E. A. Zhirnov, A. A. Efremov, Yu. T. Rebane, R. I. Gorbunov, and Yu. G. Shreter, Semiconductors 39, 594 (2005).

    Article  ADS  Google Scholar 

  16. N. I. Bochkareva, D. V. Tarkhin, Yu. T. Rebane, R. I. Gorbunov, Yu. S. Lelikov, I. A. Martynov, and Yu. G. Shreter, Semiconductors 41, 87 (2007).

    Article  ADS  Google Scholar 

  17. J. P. Donnelly and A. G. Milnes, IEEE Trans. Electron. Dev. 14, 63 (1967).

    Article  Google Scholar 

  18. B. L. Sharma and R. K. Purohit, Semiconductor Heterojunctions (Pergamon, Oxford, 1974; Sov. Radio, Moscow, 1979).

    Google Scholar 

  19. H. Qiu, C. Hoggatt, W. Melton, M. W. Leksono, and J. I. Pankove, Appl. Phys. Lett. 66, 2712 (1995).

    Article  ADS  Google Scholar 

  20. N. I. Bochkareva, Yu. T. Rebane, and Yu. G. Shreter, Semiconductors 48, 1079 (2014).

    Article  Google Scholar 

  21. N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, A. S. Zubrilov, F. E. Latyshev, Yu. S. Lelikov, Yu. T. Rebane, A. I. Tsyuk, and Yu. G. Shreter, Semiconductors 46, 1032 (2012).

    Article  ADS  Google Scholar 

  22. J. del Alamo, and R. M. Swanson, IEEE Trans. Electron Dev. Lett. 7, 629 (1986).

    Article  ADS  Google Scholar 

  23. E. Muller, D. Gerthzen, P. Bruckner, F. Scholz, Th. Gruber, and A. Waag, Phys. Rev. B 73, 245316 (2006).

    Article  ADS  Google Scholar 

  24. N. I. Bochkareva, A. A. Efremov, Yu. T. Rebane, R. I. Gorbunov, A. V. Klochkov, and Yu. G. Shreter, Semiconductors 40, 118 (2006).

    Article  ADS  Google Scholar 

  25. N. I. Bochkareva, V. V. Voronenkov, R. I. Gorbunov, F. E. Latyshev, Yu. S. Lelikov, Yu. T. Rebane, A. I. Tsyuk, and Yu. G. Shreter, Semiconductors 47, 127 (2013).

    Article  ADS  Google Scholar 

  26. R. F. Voss, J. Phys. C: Solid State Phys. 11, L923 (1978).

    Article  ADS  Google Scholar 

  27. B. I. Shklovskii, Solid State Commun. 33, 273 (1980).

    Article  ADS  Google Scholar 

  28. F. N. Hooge, Physica 60, 130 (1972).

    Article  ADS  Google Scholar 

  29. S. Bychikhin, D. Pogany, L. K. J. Vandamme, G. Meneghesso, and E. Zanoni, J. Appl. Phys. 97, 123714 (2005).

    Article  ADS  Google Scholar 

  30. S. Sawyer, S. L. Rumyantsev, M. S. Shur, N. Pala, Yu. Bilenko, J. P. Zhang, X. Hu, A. Lunev, J. Deng, and R. Gaska, J. Appl. Phys. 100, 034504 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. G. Shreter.

Additional information

Original Russian Text © N.I. Bochkareva, A.M. Ivanov, A.V. Klochkov, V.S. Kogotkov, Yu.T. Rebane, M.V. Virko, Y.G. Shreter, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 6, pp. 847–855.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bochkareva, N.I., Ivanov, A.M., Klochkov, A.V. et al. Hopping transport in the space-charge region of p-n structures with InGaN/GaN QWs as a source of excess 1/f noise and efficiency droop in LEDs. Semiconductors 49, 827–835 (2015). https://doi.org/10.1134/S1063782615060056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615060056

Keywords

Navigation