Skip to main content
Log in

Features of photoconversion in highly efficient silicon solar cells

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The photoconversion efficiency η in highly efficient silicon-based solar cells (SCs) is analyzed depending on the total surface-recombination rate S s on illuminated and rear surfaces. Solar cells based on silicon p-n junctions and α-Si:H or α-SiC:H-Si heterojunctions (so-called HIT structures) are considered in a unified approach. It is shown that a common feature of these SCs is an increased open-circuit voltage V oc associated with an additional contribution of the rear surface. Within an approach based on analysis of the physical features of photoconversion in SCs, taking into account the main recombination mechanisms, including Shockley-Read-Hall recombination, radiative recombination, surface recombination, recombination in the space-charge region, and band-to-band Auger recombination, expressions for the photoconversion efficiency of such SCs are obtained. The developed theory is compared with experiments, including those for SCs with record parameters, e.g., η = 25% and 24.7% for SCs with a p-n junction for HIT structures, respectively, under AM1.5 conditions. By comparing theory and experiment, the values of S s achieved as a result of recombination-loss minimization by various methods are determined. The results of calculations of the maximum possible value ηmax in silicon SCs are compared with the data of other papers. Good agreement is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Fahrenbruch and R. H. Bube, Fundamentals of Solar Cells. Photovoltaic Solar Energy Conversion (Academic Press, New York, 1983; Energoatomizdat, Moscow, 1987).

    Google Scholar 

  2. S. M. Sze and K. Ng. Kwok, Physics of Semiconductor Devices, 3rd ed. (Wiley, 2006).

    Book  Google Scholar 

  3. T. Tiedje, E. Yablonovitch, G. D. Cody, and B. J. Brooks, IEEE Trans. Electron. Dev. 31, 711 (1984).

    Article  ADS  Google Scholar 

  4. D. Ding, S. R. Johnson, S.-Q. Yu, S.-N. Wu, and Y.-H. Zhang, Appl. Phys. 110, 123104 (2011).

    Article  Google Scholar 

  5. I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter, Appl. Phys. Lett. 62, 131 (1993).

    Article  ADS  Google Scholar 

  6. T. Trupke, J. Zhao, A. Wang, R. Corkish, and M. A. Green, Appl. Phys. Lett. 82, 2996 (2003).

    Article  ADS  Google Scholar 

  7. M. A. Green, Progr. Photovolt.: Res. Appl. 17, 183 (2009).

    Article  Google Scholar 

  8. T. Sawada, in Proceedings of the 24th IEEE Photovoltaic Specialists Conference, IEEE 1st World Conference (Waikoloa, HI, USA, 1994), p. 1219.

    Google Scholar 

  9. A. Jano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, M. Taguchi, and E. Maruyama, in Proceedings of the 28th European Photovoltaic Solar Energy Conference and Exhibition (Paris, France, 2013), p. 1846.

    Google Scholar 

  10. D. Pysch, J. Ziegler, J.-P. Becker, D. Suwito, S. Janz, S. W. Glunz, and M. Hermle, Appl. Phys. Lett. 94, 093510 (2009).

    Article  ADS  Google Scholar 

  11. A. P. Gorban, V. P. Kostylyov, V. N. Borschev, and A. M. Listratenko, Telecommun. Radio Eng. 55(9), 94 (2001).

    Article  Google Scholar 

  12. A. P. Gorban, V. P. Kostylev, A. V. Sachenko, A. A. Serba, and V. V. Chernenko, Aviats.-Kosmich. Tekh. Tekhnol., No. 8, 83 (1999).

    Google Scholar 

  13. A. P. Gorban, A. V. Sachenko, V. P. Kostylyov, and N. A. Prima, Semicond. Phys. Quantum. Electron. Optoelectron. 3, 322 (2000).

    Google Scholar 

  14. A. P. Gorban, V. P. Kostylyov, A. V. Sachenko, O. A. Serba, I. O. Sokolovskyi, and V. V. Chernenko, Ukr. J. Phys. 55, 783 (2010).

    Google Scholar 

  15. A. V. Sachenko, A. P. Gorban, V. E. Kostylev, and I. O. Sokolovskyi, Semiconductors 40, 884 (2006).

    Article  ADS  Google Scholar 

  16. E. Yablonovitch and T. Gmitter, Appl. Phys. Lett. 49, 587 (1986).

    Article  ADS  Google Scholar 

  17. E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter, and T. B. Bright, Phys. Rev. Lett. 57, 249 (1986).

    Article  ADS  Google Scholar 

  18. R. M. Swanson, in Proceedings of the 20th European Photovoltaic Conference (Barcelona, Spain, 2005), p. 584.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sachenko.

Additional information

Original Russian Text © A.V. Sachenko, A.I. Shkrebtii, R.M. Korkishko, V.P. Kostylyov, N.R. Kulish, I.O. Sokolovskyi, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 2, pp. 271–277.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sachenko, A.V., Shkrebtii, A.I., Korkishko, R.M. et al. Features of photoconversion in highly efficient silicon solar cells. Semiconductors 49, 264–269 (2015). https://doi.org/10.1134/S1063782615020189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615020189

Keywords

Navigation