Skip to main content
Log in

The performance of alloyed (CdS0.33Se0.67) quantum dots-sensitized TiO2 solar cell

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The performance of alloyed CdS0.33Se0.67 quantum dots-sensitized solar cells (QDSSCs) is studied. Fluorine doped Tin Oxide (FTO) substrates were coated with 20nm-diameter TiO2 nanoparticles (NPs). Presynthesized CdS0.33Se0.67 quantum dots (QDs) (radius 3.1 nm) were deposited onto TiO2 nanoparticles (NPs) using direct adsorption (DA) method, by dipping for different times at ambient conditions. The FTO counter electrodes were coated with platinum, while the electrolyte containing I /I 3 redox species was sand-wiched between the two electrodes. The characteristic parameters of the assembled QDSSCs were measured at different dipping times, under AM 1.5 sun illuminations. The maximum values of short circuit current density (J sc) and conversion efficiency (η) are 1.115 mA/cm2 and 0.25% respectively, corresponding 6h dipping time. Furthermore, the J sc increases linearly with increasing the intensities of the sun light which indicates the linear response of the assembled cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. H. Lee, S. H. Im, J. H. Rhee, J.-H. Lee, and S. I. Seok, Appl. Mater. Interfaces 2, 1648 (2010).

    Article  Google Scholar 

  2. A. Badawi, N. Al-Hosiny, S. Abdallah, S. Negm, and H. Talaat, Sol. Energy 88, 137 (2013).

    Article  ADS  Google Scholar 

  3. A. J. Nozik, Chem. Phys. Lett. 457, 3 (2008).

    Article  ADS  Google Scholar 

  4. Y. Xie, S. H. Yoo, C. Chen, and S. O. Cho, Mater. Sci. Eng. B 177, 106 (2012).

    Article  Google Scholar 

  5. P. Yu, K. Zhu, A. G. Norman, S. Ferrere, A. J. Frank, and A. J. Nozik, J. Phys. Chem. B 110, 25451 (2006).

    Article  Google Scholar 

  6. N. Guijarro, T. Lana-Villarreal, I. Mora-Seró, and J. Bisquert, R. Gómez, J. Phys. Chem. C 113, 4208 (2009).

    Article  Google Scholar 

  7. J. H. Bang and P. V. Kamat, ACS Nano 3, 1467 (2009).

    Article  Google Scholar 

  8. P. Sudhagar, J. H. Jung, S. Park, Y.-G. Lee, R. Sathyamoorthy, Y. S. Kang, and H. Ahn, Electrochem. Commun. 11, 2220 (2009).

    Article  Google Scholar 

  9. K. Tvrdy, P. A. Frantsuzov, and P. V. Kamat, Proc. Natl. Acad. Sci. 108, 29 (2011).

    Article  ADS  Google Scholar 

  10. S. Abdallah, N. Al-Hosiny, and A. Badawi, J. Nanomaterials 2012, 6 (2012).

    Article  Google Scholar 

  11. I. Barceló, T. Lana-Villarreal, and R. Gómez, J. Photochem. Photobiol. A 220, 47 (2011).

    Article  Google Scholar 

  12. H. Chen, W. Li, H. Liu, and L. Zhu, Electrochem. Commun. 13, 331 (2011).

    Article  Google Scholar 

  13. X. Wang, H. Zhu, Y. Xu, H. Wang, Y. Tao, S. Hark, X. Xiao, and Q. Li, ACS Nano 4, 3302 (2010).

    Article  Google Scholar 

  14. W. Lee, S. K. Min, V. Dhas, S. B. Ogale, and S.-H. Han, Electrochem. Commun. 11, 103 (2009).

    Article  Google Scholar 

  15. T. Abdallah, K. Essawy, A. Khalid, S. Negm, and H. Talaat, World Acad. Sci., Eng. Technol. 61, 533 (2012).

    Google Scholar 

  16. K. Prabakar, H. Seo, M. Son, and H. Kim, Mater. Chem. Phys. 117, 26 (2009).

    Article  Google Scholar 

  17. A. Tubtimtae, M.-W. Lee, and G.-J. Wang, J. Power Sources 196, 6603 (2011).

    Article  Google Scholar 

  18. Y. Li, A. Pang, X. Zheng, and M. Wei, Electrochim. Acta 56, 4902 (2011).

    Article  Google Scholar 

  19. A. Tubtimtae, K.-L. Wu, H.-Y. Tung, M.-W. Lee, and G. J. Wang, Electrochem. Commun. 12, 1158 (2010).

    Article  Google Scholar 

  20. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, J. Am. Chem. Soc. 130, 4007 (2008).

    Article  Google Scholar 

  21. I. Mora-Seró, S. Giménez, T. Moehl, F. Fabregat-Santiago, T. Lana-Villareal, R. Gómez, and J. Bisquert, Nanotechnology 19, 424007 (2008).

    Article  ADS  Google Scholar 

  22. S. Giménez, I. Mora-Seró, L. Macor, N. Guijarro, T. Lana-Villarreal, R. Gómez, L. J. Diguna, Q. Shen, T. Toyoda, and J. Bisquert, Nanotechnology 20, 295204 (2009).

    Article  Google Scholar 

  23. D. R. Pernik, K. Tvrdy, J. G. Radich, and P. V. Kamat, J. Phys. Chem. C 115, 13511 (2011).

    Article  Google Scholar 

  24. A. Badawi, N. Al-Hosiny, S. Abdallah, and H. Talaat, Mater. Sci. (Poland) 31, 6 (2013).

    Article  ADS  Google Scholar 

  25. A. Salant, M. Shalom, I. Hod, A. Faust, A. Zaban, and U. Banin, ACS Nano 4, 5962 (2010).

    Article  Google Scholar 

  26. P. V. Kamat, J. Phys. Chem. C 112, 18737 (2008).

    Article  Google Scholar 

  27. N. J. Smith, K. J. Emmett, and S. J. Rosenthal, Appl. Phys. Lett. 93, 043504 (2008).

    Article  ADS  Google Scholar 

  28. D. V. Talapin, S. Haubold, A. L. Rogach, A. Kornowski, M. Haase, and H. Weller, J. Phys. Chem. B 105, 2260 (2001).

    Article  Google Scholar 

  29. G. Syrrokostas, M. Giannouli, and P. Yianoulis, Renewable Energy 34, 1759 (2009).

    Article  Google Scholar 

  30. A. Badawi, N. Al-Hosiny, S. Abdallah, S. Negm, and H. Talaat, J. Mater. Sci. Eng. A 1, 942 (2011).

    Google Scholar 

  31. J.-H. Yum, S.-H. Choi, S.-S. Kim, D.-Y. Kim, and Y.-E. Sung, J. Korean Phys. Soc. 10, 257 (2007).

    Google Scholar 

  32. L. Brus, J. Phys. Chem. 90, 2555 (1986).

    Article  Google Scholar 

  33. M. Thambidurai, N. Murugan, N. Muthukumarasamy, S. Vasantha, R. Balasundaraprabhu, and S. Agilan, Chalcogenide Lett. 6, 171 (2009).

    Google Scholar 

  34. R. Sathyamoorthy, P. Sudhagar, R. S. Kumar, and T. M. Sathyadevan, Cryst. Res. Technol. 45, 99 (2010).

    Article  Google Scholar 

  35. N. Al-Hosiny, A. Badawi, M. A. A. Moussa, R. El-Agmy, and S. Abdallah, Int. J. Nanopart. 5, 258 (2012).

    Article  Google Scholar 

  36. L. A. Swafford, L. A. Weigand, M. J. Bowers, J. R. McBride, J. L. Rapaport, T. L. Watt, S. K. Dixit, L. C. Feldman, and S. J. Rosenthal, J. Am. Chem. Soc. 128, 12299 (2006).

    Article  Google Scholar 

  37. Y.-K. Kuo, B.-T. Liou, S.-H. Yen, and H.-Y. Chu, Opt. Commun. 237, 363 (2004).

    Article  ADS  Google Scholar 

  38. O. Madelung, Semiconductors. Data Handbook, 3rd ed. (Springer, Berlin, 2004).

    Book  Google Scholar 

  39. T. C. Dang, D. L. Pham, H. C. Le, and V. H. Pham, Adv. Natl. Sci.: Nanosci. Nanotechn. 1, 015002 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdallah, S. The performance of alloyed (CdS0.33Se0.67) quantum dots-sensitized TiO2 solar cell. Semiconductors 48, 1385–1390 (2014). https://doi.org/10.1134/S1063782614100029

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614100029

Keywords

Navigation