Skip to main content

Advertisement

Log in

Influence of citric acid linker molecule on photovoltaic performance of CdS quantum dots-sensitized TiO2 solar cells

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Influence of citric acid on the photovoltaic properties of the CdS quantum dot-sensitized TiO2 solar cells (QDSSCs) was studied. Tethering of citric acid molecules with both TiO2 and CdS quantum dots (QDs) was confirmed by Fourier transform infrared spectroscopy technique. High-resolution transmission electron microscopic studies revealed that QDs with average size of ~4.5 nm, were tethered with TiO2 nanoparticles of diameter ~40 nm. Presence of Cd, S, C, Ti and O elements in the composite photoanode and their uniform distribution throughout the photoanode were confirmed by energy dispersive X-ray spectroscopy measurements. QDSSCs fabricated with pristine TiO2 photoanode exhibited a short circuit current density (JSC) of 5.80 mA cm−2 and an overall power conversion efficiency (η) of 1.10%, whereas solar cells made with citric acid-treated, photoanode-exhibited a JSC of 8.20 mA cm−2 with 1.50% efficiency under 100 mW cm−2 (AM 1.5) light illumination. This is an impressive 60% increase in the JSC and ~36% enhancement in the overall power conversion efficiency. Interfacial resistance of QDSSCs is estimated by using electrochemical impedance spectroscopy revealed that citric acid treatment enhanced both the electron injection to the conduction band of the TiO2 from the CdS as well as the overall charge transfer of the device, while decreasing the recombination of the photo-generated electrons with their holes in the electrolyte.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Zhang Z, Yang Y, Gao J, Xiao S, Zhou C, Pan D et al 2018 Mater. Today Energy 7 27

    Article  Google Scholar 

  2. Zhang Y, Tian J, Jiang K, Huang J, Zhang L, Wang H et al 2017 J. Mater. Sci.: Mater. Electron. 28 14103

    CAS  Google Scholar 

  3. Dissanayake M A K L, Jaseetharan T, Senadeera G K R, Kumari J M K W, Thotawatthage C A, Mellander B E et al 2019 J. Solid State Electrochem. 23 1787

    Article  CAS  Google Scholar 

  4. Dissanayake M A K L, Jaseetharan T, Senadeera G K R and Kumari J M K W 2020 J. Solid State Electrochem. 24 283

    Article  CAS  Google Scholar 

  5. Chen X, Lan Z, Zhang S, Wu J and Zhang J F 2017 Opt. Commun. 395 111

    Article  CAS  Google Scholar 

  6. Du Z, Artemyev M, Wang J and Tang J 2019 J. Mater. Chem. A 7 2464

    Article  CAS  Google Scholar 

  7. Zhang D, Ma P, Wang S, Xia M, Zhang S, Xie D et al 2019 Appl. Surf. Sci. 475 813

    Article  CAS  Google Scholar 

  8. Yang J, Oshima T, Yindeesuk W, Pan Z, Zhong X and Shen Q 2014 J. Mater. Chem. A 2 20882

    Article  CAS  Google Scholar 

  9. Hines D A and Kamat P V 2014 ACS Appl. Mater. Interfaces 6 3041

    Article  CAS  Google Scholar 

  10. Wang H, McNellis E R, Kinge S, Bonn M and Cánovas M 2013 Nano Lett. 13 5311

    Article  CAS  Google Scholar 

  11. Pan Z, Mora-Seró I, Shen Q, Zhang H, Li Y, Zhao H et al 2014 J. Am. Chem. Soc. 136 9203

    Article  CAS  Google Scholar 

  12. Wang D, Yin F, Du Z, Han D and Tang J 2019 J. Mater. Chem. A 7 26205

    Article  CAS  Google Scholar 

  13. Wang J, Mora-Seró I, Pan Z, Zhao K, Zhang H, Feng Y et al 2013 J. Am. Chem. Soc. 135 15913

    Article  CAS  Google Scholar 

  14. Liu F, Zhu J, Wei J, Li Y, Hu L, Huang Y et al 2014 J. Phys. Chem. C 118 214

    Article  CAS  Google Scholar 

  15. Aldakov D, Sajjad M T, Ivanova V, Bansal A K, Park J, Reiss P et al 2015 J. Mater. Chem. A 3 19050

    Article  CAS  Google Scholar 

  16. Margraf J T, Ruland X, Sgobba V, Guldi D M and Clark T 2013 Langmuir 29 2434

    Article  CAS  Google Scholar 

  17. Zhang D, Zhang S, Fang Y, Xie D, Zhou X and Lin Y 2021 Electrochim. Acta 367 137452

    Article  CAS  Google Scholar 

  18. Pu Y C, Ma H, Sajben N, Xia G, Zhang J, Li Y et al 2018 ACS Appl. Energy Mater. 1 2907

    Article  CAS  Google Scholar 

  19. Dibbell R S and Watson D F 2009 J. Phys. Chem. C 113 3139

    Article  CAS  Google Scholar 

  20. Qian S, Wang C, Liu W, Zhu Y, Yao W and Lu X 2011 J. Mater. Chem. 21 4945

    Article  CAS  Google Scholar 

  21. Wei L, Li F, Hu S, Li H, Chi B, Pu J et al 2015 J. Am. Ceram. Soc. 98 103173

    Google Scholar 

  22. Razzaq A, Lee J Y, Bhattacharya B and Park J K 2014 Appl. Nanosci. 4 745

    Article  CAS  Google Scholar 

  23. Yu L, Li Z and Song H 2017 J. Mater. Sci.: Mater. Electron. 28 2867

    CAS  Google Scholar 

  24. Zhang T, Xia Y, Diao X and Zhu C 2018 J. Nanopart. Res. 10 59

    Article  CAS  Google Scholar 

  25. Lin S C, Lee Y L, Chang C H, Shen Y J and Yang Y M 2007 Appl. Phys. Lett. 90 143517

    Article  CAS  Google Scholar 

  26. Mudunkotuwa I A and Grassian V H 2010 J. Am. Chem. Soc. 132 14986

    Article  CAS  Google Scholar 

  27. Chen R, Shao N, Zhou X and Chen T 2020 Surfaces 3 50

    Article  CAS  Google Scholar 

  28. Li W, Liang R, Hu A, Huanga Z and Zhou Y N 2014 RSC Adv. 4 36959

    Article  CAS  Google Scholar 

  29. Jiang X, Manawan M, Feng T, Qiana R, Zhaoa T, Zhoua G et al 2017 Catal. Today 300 1

    Google Scholar 

  30. Saravy H J, Safari M, Khodadadi-Darban A and Rezaei A 2014 Anal. Lett. 47 1772

    Article  CAS  Google Scholar 

  31. Wang Z, Xiao X, Zou T, Yang Y, Xing X, Zhao R et al 2019 Nanomaterials 9 32

    Article  CAS  Google Scholar 

  32. Cao S, Jiao Z, Chena H, Jianga F and Wang X 2018 J. Photochem. Photobiol. A: Chem. 364 22

    Article  CAS  Google Scholar 

  33. Kavil J, Alshahrie A and Periyat P 2018 Nano-Struct. Nano-Objects 16 24

    Article  CAS  Google Scholar 

  34. Meng Z D, Zhu L, Ye S, Sun Q, Ullah K, Cho K Y et al 2013 Nanoscale Res. Lett. 23 189

    Article  CAS  Google Scholar 

  35. Sero I M, Likodimos V, Giménez S, Ferrero E M, Albero J, Palomares E et al 2010 J. Phys. Chem. C 114 6755

    Article  CAS  Google Scholar 

  36. Yang Z, Chen C, Liu C, Li C and Chang H 2011 Adv. Energy Mater. 1 259

    Article  CAS  Google Scholar 

  37. Cho S I, Sung H K, Lee S J, Kim W H, Kim D H and Han Y S 2019 Nanomaterials 9 1645

    Article  CAS  Google Scholar 

  38. Chen J, Song J L, Sun X W, Deng W Q, Jiang C Y, Lei W et al 2009 Appl. Phys. Lett. 94 153115

    Article  CAS  Google Scholar 

  39. Green M 2010 J. Mater. Chem. 20 5797

    Article  CAS  Google Scholar 

  40. Gopi C V V M, Haritha M V, Seenu R, Tulasivarma C V, Kim S and Ki H 2015 J. Mater. Chem. C 3 12514

    Article  CAS  Google Scholar 

  41. Samadpour M, Jun H K, Parand P and Najafi M N 2019 Sol. Energy 188 825

    Article  CAS  Google Scholar 

  42. Ranjitha A, Muthukumarasamy N, Thambidurai M, Velauthapillai D R, Balasundaraprabhu R and Agilan S 2013 J. Mater. Sci.: Mater. Electron. 24 3014

    Article  CAS  Google Scholar 

  43. Kim H J, Kim D J, Rao S S, Savariraj A D, Kyoung S K, Son M K et al 2014 Electrochim. Acta 127 427

    Article  CAS  Google Scholar 

  44. Ye M, Gao X, Hong X, Liu Q, He C, Liu X et al 2017 Sustain. Energy Fuels 1 1217

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the research grant awarded by World Bank under the project of Development Oriented Research grants (DOR9-2019) for Accelerating Higher Education Expansion and Development (AHEAD). Operation of the Ministry of city planning, water supply and higher education in Sri Lanka funded by the International Bank for Reconstruction and Development (IBRD) and International Development Agency (IDA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G K R Senadeera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senadeera, G.K.R., Sandamali, W.I., Dissanayake, M.A.K.L. et al. Influence of citric acid linker molecule on photovoltaic performance of CdS quantum dots-sensitized TiO2 solar cells. Bull Mater Sci 44, 205 (2021). https://doi.org/10.1007/s12034-021-02497-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-021-02497-0

Keywords

Navigation