Skip to main content
Log in

Composite materials based on nanostructured zinc oxide

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Composites formed from ZnO nanorods in combination with CuO or Ag nanoparticles are produced by the deposition of CuO or Ag nanoparticles onto ZnO nanorod arrays grown by the hydrothermal technique. The CuO nanoparticles are synthesized by the vacuum thermal deposition of a Cu layer followed by vacuum annealing at a temperature of 350°C for 1 h. CuO particles covered with a layer of nanoneedles are obtained. The current-voltage characteristics of the ZnO/CuO layers are indicative of the formation of a p-n junction. The ZnO/Ag composites are produced by the electrical deposition of Ag nanoparticles synthesized in an aqueous solution of silver nitrate and sodium citrate. The surface morphology and the optical and electrical properties of the samples are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. Simon, D. Barreca, A. Gasparotto, C. Maccato, T. Montini, V. Gombac, P. Fornasiero, O. I. Lebedev, S. Turner, and G. van Tendeloo, J. Mater. Chem. 22, 11739 (2012).

    Article  Google Scholar 

  2. Wei Ang, Xiong Li, Sun Li, Liu Yan-Jun, and Li Wei-Wei, Chin. Phys. Lett. 30, 046202 (2013).

    Article  ADS  Google Scholar 

  3. Liwei Wang, Yanfei Kang, Yao Wang, Baolin Zhu, Shoumin Zhang, Weiping Huang, and Shurong Wang, Mater. Sci. Eng. C 32, 2079 (2012).

    Article  Google Scholar 

  4. Jae-Hwan Lim, Jee-Youl Ryu, Hyung-Sin Moon, Sung-Eun Kim, and Woo-Chang Choi, Trans. Electr. Electron. Mater. 13, 305 (2012).

    Article  Google Scholar 

  5. J. Lee, E. Park, T. Park, J. Lee, M. Sung, and W. Yi, J. Nanosci. Nanotechnol. 11, 7299 (2011).

    Article  Google Scholar 

  6. R. C. Wang and H.-Y. Lin, Appl. Phys. A 95, 813 (2009).

    Article  ADS  Google Scholar 

  7. Heejin Kim and Kijung Yong, Phys. Chem. Chem. Phys. 15, 2109 (2013).

    Article  Google Scholar 

  8. O. Lupan, Lee Chow, L. K. Ono, B. R. Cuenya, G. Chai, H. Khallaf, S. Park, and A. Schulte, J. Phys. Chem. C 114, 12401 (2010).

    Article  Google Scholar 

  9. M. A. Thomas, W. W. Sun, and J. B. Cui, J. Phys. Chem. C 116, 6383 (2012).

    Article  Google Scholar 

  10. H. R. Liu, G. X. Shao, J. F. Zhao, Z. X. Zhang, Y. Zhang, J. Liang, X. G. Liu, H. S. Jia, and B. S. Xu, J. Phys. Chem. C 116, 16182 (2012).

    Article  Google Scholar 

  11. A. N. Gruzintsev, V. T. Volkov, and E. E. Yakimov, Semiconductors 37, 259 (2003).

    Article  ADS  Google Scholar 

  12. P. V. Korake, R. Sridharkrishna, P. P. Hankare, and K. M. Garadkar, Toxicol. Environ. Chem. 94, 1075 (2012).

    Article  Google Scholar 

  13. H. Shah, E. Manikandan, A. M. Basheer, and V. Ganesan, J. Nanomed. Nanotechol. 4(3) (2013). doi:10.4172/2157-7439.1000168

    Google Scholar 

  14. Y. Wei, J. Kong, L. Yang, L. Ke, H. R. Tan, H. Liu, Y. Huang, X. W. Sun, X. Lu, and H. Du, J. Mater. Chem. A 1, 5045 (2013).

    Article  Google Scholar 

  15. Y. Wei, L. Ke, J. Kong, H. Liu, Zh. Jiao, X. Lu, H. Du, and X. W. Sun, Nanotechnol. 23, 235401 (2012).

    Article  ADS  Google Scholar 

  16. Haibin Tang, Guowen Meng, Qing Huang, Zhuo Zhang, Zhulin Huang, and Chuhong Zhu, Adv. Function. Mater. 22, 218 (2012).

    Article  Google Scholar 

  17. Yu. A. Krutyakov, A. A. Kudrynskyi, A. Yu. Olenin, and G. Yu. Lisichkin, Russ. Chem. Rev. 77, 233 (2008).

    Article  ADS  Google Scholar 

  18. J.-C. Bian, F. Yang, Zh. Li, J.-L. Zeng, X.-W. Zhang, Zh.-D. Chen, J. Z. Y. Tan, R.-Q. Peng, H.-Y. He, and J. Wang, Appl. Surf. Sci. 258, 8548 (2012).

    Article  ADS  Google Scholar 

  19. E. C. le Ru, E. Blackie, M. Meyer, and P. G. Etchegoin, J. Phys. Chem. C 111, 13794 (2007).

    Article  Google Scholar 

  20. S. G. Ovchinnikov, B. A. Gizhevskii, Yu. P. Sukhorukov, A. E. Ermakov, M. A. Uimin, E. A. Kozlov, Yu. A. Kotov, and A. V. Bagazeev, Phys. Solid State 49, 1116 (2007).

    Article  ADS  Google Scholar 

  21. S. G. Ovchinnikov, B. A. Gizhevskii, Yu. P. Sukhorukov, A. E. Ermakov, M. A. Uimin, E. A. Kozlov, Yu. A. Kotov, and A. V. Bagazeev, Phys. Solid State 49, 1116 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. V. Podrezova.

Additional information

Original Russian Text © Kh.A. Abdullin, N.B. Bakranov, D.V. Ismailov, J.K. Kalkozova, S.E. Kumekov, L.V. Podrezova, G. Cicero, 2014, published in Fizika i Tekhnika Poluprovodnikov, 2014, Vol. 48, No. 4, pp. 487–491.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullin, K.A., Bakranov, N.B., Ismailov, D.V. et al. Composite materials based on nanostructured zinc oxide. Semiconductors 48, 471–475 (2014). https://doi.org/10.1134/S1063782614040022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782614040022

Keywords

Navigation