Skip to main content
Log in

Study of the recombination process at crystallite boundaries in CuIn1 − x Ga x Se2 (CIGS) films by microwave photoconductivity

  • Surfaces, Interfaces, And Thin Films
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The loss kinetics of photogenerated charge carriers in thin polycrystalline chalcopyrite CuIn1−x Ga x Se2 (CIGS) films has been studied by microwave photoconductivity (at 36 GHz). The films were synthesized using the ampoule method and three variants of physical vapor deposition with subsequent selenization: magnetron sputtering, thermal deposition, and modified thermal deposition with intermetallic precursors. The photoconductivity was excited by 8-ns nitrogen laser pulses with maximum intensity of 4 × 1014 photons/cm per pulse. Measurements were performed in the temperature range 148–293 K. The photoresponse amplitude is found to depend linearly on the sizes of coherent-scattering regions in the film grains, which were calculated from X-ray diffraction data. The photoresponse decay obeys hyperbolic law. The photoresponse half-decay time increases with a decrease in both temperature and light intensity. It is shown that the recombination of free holes with trapped electrons is very efficient near the crystallite boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. L. Farenbruch and R. H. Bube, Fundamentals of Solar Cells Photovoltaic Solar Energy Conversion (Academic, New York, 1983; Energoatomizdat, Moscow, 1987).

    Google Scholar 

  2. K. Taretto and U. Rau, J. Appl. Phys. 103, 094523 (2008).

    Article  ADS  Google Scholar 

  3. M. Gloeckler, J. R. Sitesa, and W. K. Metzger, J. Appl. Phys. 98, 113704 (2005).

    Article  ADS  Google Scholar 

  4. G. F. Novikov, A. A. Marinin, and E. V. Rabenok, Instrum. Exp. Tech. 53, 233 (2010).

    Article  Google Scholar 

  5. G. F. Novikov and B. I. Golovanov, Zh. Nauch. Prikl. Fotogr. 43(1), 18 (1998).

    Google Scholar 

  6. R. J. Deri and R. P. Spoonhower, J. Appl. Phys. 57, 2806 (1985).

    Article  ADS  Google Scholar 

  7. N. G. Dhere, Sol. Energy Mater. Sol. Cells 95, 277 (2011).

    Article  Google Scholar 

  8. P. Luo, C. Zhu, and G. Jiang, Solid State Commun. 146, 57 (2008).

    Article  ADS  Google Scholar 

  9. C. Y. Su, W. H. Ho, H. C. Lin, C. Y. Nieh, and S. C. Liang, Sol. Energy Mater. Sol. Cells 95, 261 (2011).

    Article  Google Scholar 

  10. E. R. Baek, V. Astini, A. Tirta, and B. Kim, Curr. Appl. Phys. 11, S76 (2011).

    Article  ADS  Google Scholar 

  11. G. F. Novikov, E. V. Rabenok, M. J. Jeng, and L. B. Chang, J. Renewable Sustainable Energy 4, 011604 (2012).

    Article  Google Scholar 

  12. K. W. Wagner, Arch. Elektrotech. 2(9), 371 (1914); R. W. Sillars, J. Inst. Elect. Eng. 80, 378 (1937).

    Article  Google Scholar 

  13. G. F. Novikov, Zh. Nauch. Prikl. Fotogr. 42(6), 3 (1997).

    Google Scholar 

  14. N. A. Radychev and G. F. Novikov, Izv. Akad. Nauk, Ser. Khim., No. 5, 740 (2006).

    Google Scholar 

  15. P. Chelvanathan, M. I. Hossain, and N. Amin, Curr. Appl. Phys. 10, S387 (2010).

    Article  ADS  Google Scholar 

  16. S. B. Zhang, Su-Yuai Wei, Alex Zunger, and H. Katayama-Yoshida, Phys. Rev. B 57, 9642 (1998).

    Article  ADS  Google Scholar 

  17. H. J. Moeller, Semiconductor for Cells (Boston, Artech, 1993).

    Google Scholar 

  18. J. Y. W. Seto, J. Appl. Phys. 46, 5247 (1975).

    Article  ADS  Google Scholar 

  19. K. L. Chopra and S. R. Das, Thin Film Solar Cells (Plenum, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Novikov.

Additional information

Original Russian Text © K.V. Bocharov, G.F. Novikov, T.Y. Hsieh, M.V. Gapanovich, M.J. Jeng, 2013, published in Fizika i Tekhnika Poluprovodnikov, 2013, Vol. 47, No. 3, pp. 310–315.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bocharov, K.V., Novikov, G.F., Hsieh, T.Y. et al. Study of the recombination process at crystallite boundaries in CuIn1 − x Ga x Se2 (CIGS) films by microwave photoconductivity. Semiconductors 47, 335–340 (2013). https://doi.org/10.1134/S1063782613030056

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782613030056

Keywords

Navigation