Skip to main content
Log in

Interaction of carbon dioxide laser radiation with a nanotube array in the presence of a constant electric field

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The dependence of the current density on the leading edge width of the alternating (high-frequency) field amplitude is studied at various constant (or unsteady) fields. The dependence of amplified microwaves in the two-millimeter range on a longitudinal coordinate is determined. The problem of submillimeter radiation generation in a system of parallel carbon nanotubes exposed to two-frequency carbon dioxide (CO2 laser) laser radiation in the presence of a constant (or unsteady) field is studied. The possibility of using freely oriented carbon nanotubes parallel to each other is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. N. D’yachkov, Electronic Properties and Application of Nanotubes (BINOM, Laboratoriya znanii, Moscow, 2011) [in Russian].

    Google Scholar 

  2. R. Satio, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998).

    Google Scholar 

  3. A. Enyashin, S. Gemming, and G. Seifert, Eur. Phys. J. Spec. Top. 149, 103 (2007).

    Article  Google Scholar 

  4. A. N. Enyashin and G. Seifert, Phys. Status. Solidi B 242, 1361 (2005).

    Article  ADS  Google Scholar 

  5. O. V. Kibis and M. E. Portnoi, Tech. Phys. Lett. 31, 671 (2005).

    Article  Google Scholar 

  6. G. Ya. Slepyan, M. V. Shuba, S. A. Maksimenko, and A. Lakhtakia, Phys. Rev. B 73, 195416 (2006).

    Article  ADS  Google Scholar 

  7. P. Burke, S. Li, and Z. Yu, IEEE Trans. Nanotechnol. 5, 314 (2006).

    Article  ADS  Google Scholar 

  8. C. Rutherglen and P. Burke, Small 5, 884 (2009).

    Article  Google Scholar 

  9. M. B. Belonenko, S. Yu. Glazov, and N. E. Meshcheryakov, Semiconductors 44, 1211 (2010).

    Article  ADS  Google Scholar 

  10. G. A. Mesyats and M. I. Yalandin, Phys. Usp. 48, 211 (2005); G. A. Mesyats, Phys. Usp. 49, 1045 (2006).

    Article  ADS  Google Scholar 

  11. S. J. Tans, H. Devoret, H. Dai, A. Thess, R. E. Smalley, and L. J. Geerligs, Nature 386, 474 (1997).

    Article  ADS  Google Scholar 

  12. Physical Quantities, The Handbook, Ed. by A. P. Babichev, N. A. Babushkina, A. M. Bratkovskii, et al. (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  13. W. J. Witteman, The CO 2 -Laser (Springer-Verlag, 1987; Mir, Moscow, 1990).

  14. S. V. Garnov and I. A. Shcherbakov, Phys. Usp. 54, 91 (2011).

    Article  ADS  Google Scholar 

  15. J. Hebling, G. Almasi, I. Z. Kozma, and J. Kuhl, Opt. Express 10, 1161 (2002).

    ADS  Google Scholar 

  16. N. R. Sadykov and N. A. Skorkin, Tech. Phys. Lett. 36, 811 (2010).

    Article  ADS  Google Scholar 

  17. S. Ilani, L. A. Donev, M. Kindermann, et al., Nature Phys. 2, 687 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. R. Sadykov.

Additional information

Original Russian Text © N.R. Sadykov, N.A. Scorkin, 2012, published in Fizika i Tekhnika Poluprovodnikov, 2012, Vol. 46, No. 6, pp. 809–814.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadykov, N.R., Scorkin, N.A. Interaction of carbon dioxide laser radiation with a nanotube array in the presence of a constant electric field. Semiconductors 46, 790–795 (2012). https://doi.org/10.1134/S1063782612060188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782612060188

Keywords

Navigation