Skip to main content
Log in

Laguerre-Gaussian Laser Beam Second Harmonic Generation in Arrays of Vertically Aligned Carbon Nanotube

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this present work, we have studied second harmonic generation by nonlinear interaction of Laguerre-Gaussian laser in arrays of vertically aligned carbon nanotubes. These arrays of carbon nanotube are organized in a dielectric surface and the interaction of Laguerre-Gaussian laser beam is taken perpendicularly to the length of carbon nanotube. As the Laguerre-Gaussian laser beam field interacts with carbon nanotube arrays, the nonlinearity in the medium is arisen by electrostatic restoration force and causes the excursion in electron cylinder with respect to ion cylinder. The nonlinearity results the second and third harmonic electron excursion in carbon nanotube. We have derived the analytic expressions of second harmonic nonlinear current density and second harmonic electric field in carbon nanotubes. The results and discussions of this theory is explained by various graphical profiles. Owing to presence of surface plasmons resonance, enhanced second harmonic electric field amplitude is observed for laser beam frequency approaches near the \(\sqrt{2}\) times of the electron plasma frequency. The peak amplitude of second harmonic electric field is seen at Laguerre-Gaussian laser beam-normalized propagation distance\(r/{w}_{0L }\sim 0.46\). One can tune and control the second harmonic electric field amplitude by varying the Laguerre-Gaussian laser beam index (l, p), laser beam initial width\(({w}_{0L })\), laser beam frequency, carbon nanotube radii, inter carbon nanotube separation, equilibrium electron density of carbon nanotube and electron–ion collisional frequency. The large amplitude second harmonic field is generated by using the Laguerre-Gaussian laser beam compared with only Gaussian laser beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Availability of Data and Material

The data that supports the findings of this study are available within this article.

References

  1. Boffard JB, Lin CC, DeJoseph CA Jr (2004) Application of excitation cross sections to optical plasma diagnostics. J Phys D: Appl Phys 37:R143

    Article  CAS  Google Scholar 

  2. Varma A, Mishra SP, Kumar A, Kumar A (2023) Electron Bernstein wave aided Hermite cosh-Gaussian laser beam absorption in collisional plasma. Laser Phys Lett 20:076001

    Article  Google Scholar 

  3. Varma A, Kumar A (2021) Electron Bernstein wave aided beat wave of Hermite-cosh-Gaussian laser beam absorption in a collisional nanocluster plasma. Optik 245:167702

    Article  CAS  Google Scholar 

  4. Varma A, Kumar A (2022) Electron Bernstein wave aided heating of collisional nanocluster plasma by nonlinear interactions of two super-Gaussian laser beams. Laser Phys 32:016001

    Article  CAS  Google Scholar 

  5. Kumar A, Kumar A, Mishra SP, Yadav MS, Varma A (2022) Plasma wave aided heating of collisional nanocluster plasma by nonlinear interaction of two high power laser beams. Opt Quant Electron 54:753

    Article  Google Scholar 

  6. Varma A, Kumar A (2021) Electron Bernstein wave excitation and heating by nonlinear interactions of Laguerre and Hermite Gaussian laser beams in a magnetized plasma. Optik 228:166212

    Article  CAS  Google Scholar 

  7. Siahmazgi RN, Jafari S (2020) Tunable terahertz radiation generation using the beating of two super-Gaussian laser beams in the collisional nanocluster plasma. Journal of the Optical Society of America B 37:3296–3302

    Article  CAS  Google Scholar 

  8. Varma A, Kumar A (2021) Electron Bernstein wave excitation by beating of two copropagating super-Gaussian laser beam in a collisional nanocluster plasma. Optik 240:166872

    Article  CAS  Google Scholar 

  9. Jeet R, Kumar A, Kumar A, Babu S, Varma A (2021) Acceleration of electrons by a lower hybrid wave in a magnetic mirror. J Korean Phys Soc 78:1179–1184

    Article  CAS  Google Scholar 

  10. Yadav M, Mandal S, Kumar A (2021) Guided acceleration of nanoparticles by laser irradiated parallel gold nanorods. Plasma Res Express 3:045005

    Article  CAS  Google Scholar 

  11. Babu S, Patel RJ, Kumar A, Kumar A, Varma A (2022) Parametric Instability of an X-mode laser off a lower hybrid wave. Iranian Journal of Science and Technology Transaction A Science 46:1719–1726

    Article  Google Scholar 

  12. Babu S, Patel RJ, Kumar A, Kumar A, Varma A (2022) Decay instability of X-mode laser in a magnetized plasma embedded with clusters. Opt Quant Electron 55:119

    Article  Google Scholar 

  13. Babu S, Jeet R, Kumar A, Kumar A, Varma A (2022) Decay instability of X-mode laser into upper hybrid and electron Bernstein waves in a plasma. Opt Quant Electron 54:710

    Article  Google Scholar 

  14. Kleinman DA (1962) Theory of second harmonic generation of light. Phys Rev 128:1761

    Article  CAS  Google Scholar 

  15. Sharma V, Thakur V, Kant N (2019) Third harmonic generation of a relativistic self-focusing laser in plasma in the presence of wiggler magnetic field. High Energy Density Phys 32:51–55

    Article  Google Scholar 

  16. Siahmazgi RN, Jafari S (2021) Soft X-ray emission from an anharmonic collisional nanoplasma by a laser–nanocluster interaction. J Plasma Phys 87:905870312

    Article  Google Scholar 

  17. Das TK, Goel R, Awasthi V, Singh T, Shukla V, Kumar A, Poswal HK, Srivastava AP, Dubey SK, Padmnabh R (2021) Surface enhanced Raman scattering from single-walled carbon nanotube decorated on Ag nanowires. Plasmonics 16:1339–1348

    Article  CAS  Google Scholar 

  18. Wang Y, Wang X, Wu Q, He XJ, Gui TL, Tong YJ (2012) Surface plasmon resonant THz wave transmission on carbon nanotube film. Plasmonics 7:411–415

    Article  CAS  Google Scholar 

  19. Moradi A (2015) Plasmon hybridization in a symmetry-broken metallic nanotube above a substrate. Plasmonics 10:999–1003

    Article  CAS  Google Scholar 

  20. Dash S, Patnaik A (2018) Performance of graphene plasmonic antenna in comparison with their counterparts for low-terahertz applications. Plasmonics 13:2353–2360

    Article  CAS  Google Scholar 

  21. Dimple Sharma D, Singh D, Malik HK (2020) Shape-dependent terahertz radiation generation through nanoparticles. Plasmonics 15:177–187

    Article  Google Scholar 

  22. Yadav M, Mandal S, Kumar A (2020) Nonlinear laser absorption on metal surfaces embedded with metallic nanoparticles and nanotubes. Phys Plasmas 27:043302

    Article  CAS  Google Scholar 

  23. Ganeev RA, Kim VV, Butikova J, Atvars A, Grube J, Sarakovskis A, Ubelis A (2023) High-order harmonics generation in Cd and Pd laser-induced plasmas. Opt Express 31:26626

    Article  CAS  PubMed  Google Scholar 

  24. Singh KP, Gupta VL, Tripathi VK (2003) Relativistic laser harmonic generation from plasmas with density ripple. Optics Communications 226:1–6

    Article  Google Scholar 

  25. Singh KP, Gupta DN, Yadav S, Tripathi VK (2005) Relativistic second-harmonic generation of a laser from underdense plasmas. Phys Plasmas 12:013101

    Article  Google Scholar 

  26. Varma A, Mishra S P, Kumar A, Kumar S and Kumar A (2023) Electron plasma wave excitation by two co-propagating super-Gaussian laser beams in collisional nanocluster Plasma: Journal of Theoretical and Applied Physics (JTAP) 17:5 https://doi.org/10.57647/J.JTAP.2023.1705.54

  27. Devi L, Malik HK (2018) Resonant third harmonic generation of super-Gaussian laser beam in a rippled density plasma. Journal of Theoretical and Applied Physics 12:265–270

    Article  Google Scholar 

  28. Tyagi Y, Tripathi D, Walia K (2017) Laser second harmonic generation in a magnetoplasma assisted by an electrostatic wave. Phys Plasmas 24:043104

    Article  Google Scholar 

  29. Stanciu C, Ehlich R, Petrov V, Steinkellner O, Herrmann J, Hertel IV, Slepyan Ya G, Khrutchinski AA, Maksimenko SA, Rotermund F, Campbell EEB, Rohmund F (2002) Experimental and theoretical study of third-order harmonic generation in carbon nanotubes. Appl Phys Lett 81:4064

    Article  CAS  Google Scholar 

  30. Singh MR (2013) Enhancement of the second-harmonic generation in a quantum dot–metallic nanoparticle hybrid system. Nanotechnology 24:125701

    Article  PubMed  Google Scholar 

  31. Ganeev RA, Naik PA, Singhal H, Chakera JA, Kumar M, Joshi MP, Srivastava AK, Gupta PD (2011) High-order harmonic generation in carbon-nanotube-containing plasma plumes. Phys Rev A 83:013820

    Article  Google Scholar 

  32. Ganeev RA (2022) Low- and high-order optical nonlinearities of quantum dots. Photonics 9:757

    Article  CAS  Google Scholar 

  33. Ganeev RA, Kim VV, Shuklov IA, Popov VS, Lavrentyev NA, Ponomarenko VP, Mardini AA, Dyomkin DV, Milenkovič T, Bundulis A, Grube J, Sarakovskis A (2022) Third harmonic generation in the thin films containing quantum dots and exfoliated nanoparticles. Appl Phys B 128:202

    Article  CAS  Google Scholar 

  34. Ganeev RA (2023) High-order harmonics enhancement in laser-induced plasma. Sci Rep 13:13951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yadav M, Mandal S, Kumar A (2019) Nonlinear absorption and harmonic generation of laser in an assembly of CNT’s. Phys Plasmas 26:073110

    Article  Google Scholar 

  36. Tiwari PK, Tipathi VK (2006) Laser third-harmonic generation in clustered plasmas. Phys Scr 74:682

    Article  CAS  Google Scholar 

  37. Sharma S, Vijay A (2018) Resonant second–harmonic generation in a magnetized plasma embedded with clusters. Optik 204:164023

    Article  Google Scholar 

  38. Parashar J (2009) Effect of self-focusing on laser third harmonic generation in a clustered gas. Phys Scr 79:015501

    Article  Google Scholar 

  39. Aggarwal M, Vij S, Kant N (2015) Wiggler magnetic field assisted second harmonic generation in clusters. Eur Phys J D 69:149

    Article  Google Scholar 

  40. Varma A, Mishra SP (2024) Kumar A and Kumar A (2024) Nonlinear absorption of Cosh-Gaussian laser beam in arrays of vertically aligned carbon nanotube. Plasmonics 19:505–521

    Article  CAS  Google Scholar 

  41. Vij S, Kant N, Thakur V (2019) Resonant enhancement of THz radiation through vertically aligned carbon nanotubes array by applying wiggler magnetic field. Plasmonics 14:1051–1056

    Article  CAS  Google Scholar 

  42. Kumar S, Vij S, Kant N, Thakur V (2022) Resonant terahertz generation by the interaction of laser beams with magnetized anharmonic carbon nanotube array. Plasmonics 17:381–388

    Article  CAS  Google Scholar 

  43. Kumar S, Vij S, Kant N, Thakur V (2022) Nonlinear interaction of amplitude-modulated Gaussian laser beam with anharmonic magnetized and rippled CNTs: THz generation. Braz J Phys 53:37

    Article  Google Scholar 

  44. Tovar AA (1998) Production and propagation of cylindrically polarized Laguerre-Gaussian laser beams. J Opt Soc Am A 15:10

    Google Scholar 

  45. Safari S, Niknam AR, Jahangiri F, Jazi B (2018) Terahertz radiation generation through the nonlinear interaction of Hermite and Laguerre Gaussian laser beams with collisional plasma: field profile optimization. J Appl Phys 123:153101

    Article  Google Scholar 

  46. Kumar A, Mishra SP, Kumar S, Kumar A, Varma A (2023) Excitation of electron Bernstein wave by nonlinear interaction of two copropagating Hermite-Gaussian laser beams in collisional plasma with static magnetic field: Opt Quant Electron 55:598

    Google Scholar 

  47. Kumar A, Mishra SP, Kumar A, Varma A (2022) Electron Bernstein wave aided cosh-Gaussian laser beam absorption in plasma. Optik 273:170436

    Article  Google Scholar 

  48. Varma A, Kumar A (2021) Excitation of lower hybrid wave by counterpropagating cosh Gaussian laser beams in a magnetized plasma. Optik 231:166326

    Article  CAS  Google Scholar 

  49. Varma A, Kumar A, Kumar A (2021) Nonlocal theory of excitation of electron Bernstein waves by a relativistic electron beam in plasma with loss-cone distribution of electron: Braz. J Phys 51:661–666

    Google Scholar 

  50. Kumar A, Kumar A, Varma A (2021) Excitation of electron Bernstein waves by beating of two cosh-Gaussian laser beams in a collisional plasma: Laser Phys 31:106001

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like grateful to Prof. V. K. Tripathi (IIT Delhi), Prof. M. S, Tiwari (Dr. H. S. Gour University, Sagar), and Prof. K. N. Uttam (Department of Physics, University of Allahabad, India) for valuable discussions and suggestion. We would like to thank Principal of K. N. Govt. P. G. College, Gyanpur, Bhadohi for providing the research facilities.

Author information

Authors and Affiliations

Authors

Contributions

Ashish Varma and S. P. Mishra developed the theory and write the manuscript. Arvind Kumar plotted the graphs and analyze the results. Asheel Kumar supervised the whole problem.

Corresponding author

Correspondence to Asheel Kumar.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

The participant has consented to the submission of the case report to the journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varma, A., Mishra, S.P., Kumar, A. et al. Laguerre-Gaussian Laser Beam Second Harmonic Generation in Arrays of Vertically Aligned Carbon Nanotube. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02284-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02284-7

Keywords

Navigation