Skip to main content
Log in

Laser-induced desorption of atomic and molecular fragments from a tin dioxide surface modified by a thin organic covering of copper phthalocyanine

  • Spectroscopy, Interaction with Radiation
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The systematic features of laser-induced desorption from an SnO2 surface exposed to 10-ns pulsed neodymium laser radiation are studied at the photon energy 2.34 eV, in the range of pulse energy densities 1 to 50 mJ/cm2. As the threshold pulse energy 28 mJ/cm2 is achieved, molecular oxygen O2 is detected in the desorption mass spectra from the SnO2 surface; as the threshold pulse energy 42 mJ/cm2 is reached, tin Sn, and SnO and (SnO)2 particle desorption is observed. The laser desorption mass spectra from the SnO2 surface coated with an organic copper phthalocyanine (CuPc) film 50 nm thick are measured. It is shown that laser irradiation causes the fragmentation of CuPc molecules and the desorption of molecular fragments in the laser pulse energy density range 6 to 10 mJ/cm2. Along with the desorption of molecular fragments, a weak desorption signal of the substrate components O2, Sn, SnO, and (SnO)2 is observed in the same energy range. Desorption energy thresholds of substrate atomic components from the organic film surface are approximately five times lower than thresholds of their desorption from the atomically clean SnO2 surface, which indicates the diffusion of atomic components of the SnO2 substrate to the bulk of the deposited organic film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Il’chuk, S. E. Nikitin, Yu. A. Nikolaev, V. Yu. Rud’, and E. N. Terukov, Semiconductors 38, 1308 (2004).

    Article  ADS  Google Scholar 

  2. E. L. Aleksandrova, E. A. Lebedev, N. N. Konstantinova, and A. N. Aleshin, Solid-State Phys. 52, 422 (2010).

    Article  ADS  Google Scholar 

  3. S. A. Komolov, E. F. Lazneva, and I. S. Buzin, Tech. Phys. Lett. 35, 359 (2009).

    Article  ADS  Google Scholar 

  4. A. S. Komolov, P. J. Moller, J. Mortensen, S. A. Komolov, and E. F. Lazneva, Appl. Surf. Sci. 253, 7376 (2007).

    Article  ADS  Google Scholar 

  5. A. S. Komolov, N. B. Gerasimova, E. F. Lazneva, and S. N. Akhremchik, Phys. Solid State 51, 1753 (2009).

    Article  ADS  Google Scholar 

  6. N. L. Zaitsev, I. A. Nechaev, and E. V. Chulkov, J. Exp. Theor. Phys. 110, 114 (2010).

    Article  ADS  Google Scholar 

  7. D. Sporleder, D. P. Wilson, and M. G. White, J. Phys. Chem. C 11, 13180 (2009).

    Article  Google Scholar 

  8. P. J. Moller, E. F. Lazneva, A. S. Komolov, and S. A. Komolov, Surf. Sci. 395, 82 (1998).

    Article  ADS  Google Scholar 

  9. E. F. Lazneva, Rad. Eff. Def. Sol. 115, 257 (1991).

    Article  Google Scholar 

  10. F. Yu. Kozlov, A. S. Komolov, and E. F. Lazneva, in Laser Research in SPb State University, No. 2, Ed. by V. B. Smirnov and A. A. Petrov (St.-Petersburg, 2003).

  11. E. F. Lazneva, A. M. Turiev, and S. A. Komolov, Tech. Phys. Lett. 35, 781 (2009).

    Article  ADS  Google Scholar 

  12. E. F. Lazneva, Tech. Phys. Lett. 33, 926 (2007).

    Article  ADS  Google Scholar 

  13. C. L. Hedberg, Handbook of Auger Electron Spectroscopy (Perkin-Elmer Physical Electronics, Eden Prairie, 1995).

    Google Scholar 

  14. E. F. Lazneva and A. M. Turiev, Poverkhnost’ 7, 10 (1985).

    Google Scholar 

  15. A. Namiki, T. Kawai, and K. Ichige, Surf. Sci. 166, 129 (1986).

    Article  ADS  Google Scholar 

  16. E. P. Domashevskaya, Yu. A. Yurakov, and S. V. Ryabtsev, J. Electron. Spectr. Rel. Phenom. 156–158, 340 (2007).

    Article  Google Scholar 

  17. K. Hittori, A. Okano, Y. Nakai, and N. Itoh, Phys. Rev. B 445, 8424 (1992).

    Article  ADS  Google Scholar 

  18. A. S. Komolov, E. F. Lazneva, and S. N. Akhremtchik, Appl. Surf. Sci. 256, 2419 (2010).

    Article  ADS  Google Scholar 

  19. A. S. Komolov, P. J. Moller, J. Mortensen, and E. F. Lazneva, Surf. Sci. 586, 129 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Komolov.

Additional information

Original Russian Text © A.S. Komolov, S.A. Komolov, E.F. Lazneva, A.M. Turiev, 2012, published in Fizika i Tekhnika Poluprovodnikov, 2012, Vol. 46, No. 1, pp. 48–52.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komolov, A.S., Komolov, S.A., Lazneva, E.F. et al. Laser-induced desorption of atomic and molecular fragments from a tin dioxide surface modified by a thin organic covering of copper phthalocyanine. Semiconductors 46, 45–48 (2012). https://doi.org/10.1134/S1063782612010125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782612010125

Keywords

Navigation