Skip to main content
Log in

Capture of charge carriers and output power of a quantum well laser

  • Physics of Semiconductor Devices
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The effect of noninstantaneous carrier capture by a nanoscale active region on the power characteristics of a semiconductor laser is studied. A laser structure based on a single quantum well is considered. It is shown that delayed carrier capture by the quantum well results in a decrease in the internal differential quantum efficiency and sublinearity of the light-current characteristic of the laser. The main parameter of the developed theoretical model is the velocity of carrier capture from the bulk (waveguide) region to the two-dimensional region (quantum well). The effect of the capture velocity on the dependence of the following laser characteristics on the pump current density is studied: the output optical power, internal quantum efficiency of stimulated emission, current of stimulated recombination in the quantum well, current of spontaneous recombination in the optical confinement layer, and carrier concentration in the optical confinement layer. A decrease in the carrier capture velocity results in a larger sublinearity of the light-current characteristic, which results from an increase in the injection current fraction expended to parasitic spontaneous recombination in the optical confinement layer and, hence, a decrease in the injection current fraction expended to stimulated recombination in the quantum well. A comparison of calculated and experimental light-current characteristics for a structure considered as an example shows that good agreement between them (up to a very high injection current density of 45 kA/cm2) is attained at a capture velocity of 2 × 106 cm/s. The results of this study can be used to optimize quantum well lasers for generating high optical powers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Z. Garbuzov, A. V. Ovchinnikov, N. A. Pikhtin, Z. N. Sokolova, I. S. Tarasov, and V. B. Khalfin, Sov. Phys. Semicond. 25, 560 (1991).

    Google Scholar 

  2. W. Rideout, W. F. Sharfin, E. S. Koteles, M. O. Vassell, and B. Elman, IEEE Photon. Technol. Lett. 3, 784 (1991).

    Article  ADS  Google Scholar 

  3. N. Tessler, R. Nagar, G. Eisenstein, S. Chandrasekhar, C. H. Joyner, A. G. Dentai, U. Koren, and G. Raybon, Appl. Phys. Lett. 61, 2383 (1992).

    Article  ADS  Google Scholar 

  4. H. Hirayama, J. Yoshida, Y. Miyake, and M. Asada, Appl. Phys. Lett. 61, 2398 (1992).

    Article  ADS  Google Scholar 

  5. H. Hirayama, J. Yoshida, Y. Miyake, and M. Asada, IEEE J. Quantum Electron. 30, 54 (1994).

    Article  ADS  Google Scholar 

  6. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, New York, 1995).

    Google Scholar 

  7. G. W. Taylor and P. R. Claisse, IEEE J. Quantum Electron. 31, 2133 (1995).

    Article  ADS  Google Scholar 

  8. P. M. Smowton and P. Blood, IEEE J. Sel. Top. Quantum Electron. 3, 491 (1997).

    Article  Google Scholar 

  9. G. W. Taylor and S. Jin, IEEE J. Quantum Electron. 34, 1886 (1998).

    Article  ADS  Google Scholar 

  10. L. V. Asryan, S. Luryi, and R. A. Suris, Appl. Phys. Lett. 81, 2154 (2002).

    Article  ADS  Google Scholar 

  11. L. V. Asryan, S. Luryi, and R. A. Suris, IEEE J. Quantum Electron. 39, 404 (2003).

    Article  ADS  Google Scholar 

  12. A. V. Lyutetskii, K. S. Borshchev, N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, and I. S. Tarasov, Semiconductors 42, 104 (2008).

    Article  ADS  Google Scholar 

  13. D.-S. Han and L. V. Asryan, Nanotechnology 21,015201 (2010).

    Article  ADS  Google Scholar 

  14. I. N. Yassievich, K. Schmalz, and M. Beer, Semicond. Sci. Technol. 9, 1763 (1994).

    Article  ADS  Google Scholar 

  15. C.-Y. Tsai, Y. H. Lo, R. M. Spencer, and L. F. Eastman, IEEEJ. Sel. Top. Quantum Electron. 1, 316 (1995).

    Article  Google Scholar 

  16. S. A. Solov’ev, I. N. Yassievich, and V. M. Chistyakov, Semiconductors 29, 654 (1995).

    ADS  Google Scholar 

  17. A. Dargys and J. Kundrotas, Semicond. Sci. Technol. 13, 1258 (1998).

    Article  ADS  Google Scholar 

  18. R. A. Suris, NATO ASI Series E 323, 197 (1996).

    Google Scholar 

  19. L. V. Asryan, N. A. Gun’ko, A. S. Polkovnikov, G. G. Zegrya, R. A. Suris, P.-K. Lau, and T. Makino, Semicond. Sci. Technol. 15, 1131 (2000).

    Article  ADS  Google Scholar 

  20. L. V. Asryan, Quantum Electron. 35, 1117 (2005).

    Article  ADS  Google Scholar 

  21. L. V. Asryan and R. A. Suris, Semicond. Sci. Technol. 11, 554 (1996).

    Article  ADS  Google Scholar 

  22. K. J. Vahala and C. E. Zah, Appl. Phys. Lett. 52, 1945 (1988).

    Article  ADS  Google Scholar 

  23. L. V. Asryan and S. Luryi, Appl. Phys. Lett. 83, 5368 (2003).

    Article  ADS  Google Scholar 

  24. L. V. Asryan and S. Luryi, IEEE J. Quantum Electron. 40, 833 (2004).

    Article  ADS  Google Scholar 

  25. L. V. Asryan and R. A. Suris, Semiconductors 38, 1 (2004).

    Article  ADS  Google Scholar 

  26. S. O. Slipchenko, Z. N. Sokolova, N. A. Pikhtin, K. S. Borshchev, D. A. Vinokurov, and I. S. Tarasov, Semiconductors 40, 990 (2006).

    Article  ADS  Google Scholar 

  27. D. A. Vinokurov, V. A. Kapitonov, A. V. Lyutetskii, N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, A. L. Stankevich, M. A. Khomylev, V. V. Shamakhov, K. S. Borshch, I. N. Arsent’ev, and I. S. Tarasov, Semiconductors 41, 984 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. N. Sokolova.

Additional information

Original Russian Text © Z.N. Sokolova, I.S. Tarasov, L.V. Asryan, 2011, published in Fizika i Tekhnika Poluprovodnikov, 2011, Vol. 45, No. 11, pp. 1553–1559.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolova, Z.N., Tarasov, I.S. & Asryan, L.V. Capture of charge carriers and output power of a quantum well laser. Semiconductors 45, 1494–1500 (2011). https://doi.org/10.1134/S1063782611110261

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782611110261

Keywords

Navigation