Skip to main content
Log in

Excitonic spectrum of the ZnO/ZnMgO quantum wells

  • Semiconductor Structures, Low-Dimensional Systems, and Quantum Phenomena
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Excitonic spectrum of the wurtzite ZnO/Zn1 − x Mg x O quantum wells with a width on the order of or larger than the Bohr radius of the exciton has been studied; the quantum wells have been grown by the method of molecular beam epitaxy (with plasma-assisted activation of oxygen) on substrates of sapphire (0001). Low-temperature (25 K) spectra of photoluminescence excitation (PLE) have been experimentally measured, making it possible to resolve the peaks of exciton absorption in the quantum well. The spectrum of excitons in the quantum well is theoretically determined as a result of numerical solution of the Schrödinger equation by the variational method. The value of elastic stresses in the structure (used in calculations) has been determined from theoretical simulation of measured spectra of optical reflection. A comparison of experimental data with the results of calculations makes it possible to relate the observed features in the PLE spectra to excitons, including the lower level of dimensional quantization for electrons and two first levels of holes for the A and B valence bands of the wurtzite crystal. The values of the electron and hole masses in ZnO are refined, and the value of the built-in electric field introduced by spontaneous and piezoelectric polarizations is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doǧan, V. Avrutin, S.-J. Cho, and H. Morko J. Appl. Phys. 98, 041301 (2005).

    Article  ADS  Google Scholar 

  2. Claus Klingshirn, J. Fallert, H. Zhou, J. Sartor, C. Thiele, F. Maier-Flaig, D. Schneider, and H. Kalt, Phys. Status Solidi B 247, 1424 (2010).

    Article  ADS  Google Scholar 

  3. S. V. Ivanov, A. El-Shaer, T. V. Shubina, S. B. Listoshin, A. Bakin, and A. Waag, Phys. Status Solidi 40, 154 (2007).

    Google Scholar 

  4. A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinumab, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, Appl. Phys. Lett. 72, 2466 (1998).

    Article  ADS  Google Scholar 

  5. A. Ohtomo, M. Kawasaki, I. Ohkubo, H. Koinuma, T. Yasuda, and Y. Segawa, Appl. Phys. Lett. 75, 980 (1999).

    Article  ADS  Google Scholar 

  6. J.-M. Chauveau, J. Vives, J. Zúñiga-Pérez, M. Laügt, M. Teisseire, C. Deparis, C. Morhain, and B. Vinter, Appl. Phys. Lett. 93, 231911 (2008).

    Article  ADS  Google Scholar 

  7. J. A. Davis and C. Jagadish, Laser Photon Rev. 3, 85 (2009).

    Article  ADS  Google Scholar 

  8. B. Pecz, A. El-Shaer, A. Bakin, A.-C. Mofor, A. Waag, and J. Stoemenos, J. Appl. Phys. 100, 103506 (2006).

    Article  ADS  Google Scholar 

  9. A. Bakin, A. El-Shaer, A. C. Mofor, M. Kreye, A. Waag, F. Vertram, J. Christen, M. Heuken, and J. Stoimenos, J. Cryst. Growth 287, 7 (2006).

    Article  ADS  Google Scholar 

  10. B. Gil, A. Lusson, V. Sallet, S.-A. Said-Hassani, R. Triboulet, and P. Bigenwald, Jpn. J. Appl. Phys. 40, L1089 (2001).

    Article  ADS  Google Scholar 

  11. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1965; Nauka, Moscow, 1973).

    Google Scholar 

  12. A. Fischer, H. Kuhne, and H. Richter, Phys. Rev. Lett. 73, 2712 (1994).

    Article  ADS  Google Scholar 

  13. G. Coli and K. K. Bajaj, Appl. Phys. Lett. 78, 2861 (2001).

    Article  ADS  Google Scholar 

  14. S. M. Cao, M. Willander, E. L. Ivchenko, A. I. Nesvizhskii, and A. A. Toropov, Superlatt. Microstruct. 17 (1995).

  15. B. Gill, P. Lefebvre, T. Bretagnon, T. Guillet, J. A. Sans, and T. Taliercio, Phys. Rev. B 74, 153302 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Bobrov.

Additional information

Original Russian Text © M.A. Bobrov, A.A. Toropov, S.V. Ivanov, A. El-Shaer, A. Bakin, A. Waag, 2011, published in Fizika i Tekhnika Poluprovodnikov, 2011, Vol. 45, No. 6, pp. 783–787.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobrov, M.A., Toropov, A.A., Ivanov, S.V. et al. Excitonic spectrum of the ZnO/ZnMgO quantum wells. Semiconductors 45, 766–770 (2011). https://doi.org/10.1134/S1063782611060042

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782611060042

Keywords

Navigation