Skip to main content
Log in

Mechanisms of defect formation in ingots of 4H silicon carbide polytype

  • Nonelectronic Properties of Semiconductors (Atomic Structure, Diffusion)
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

The methods of optical microscopy and X-ray diffractometry have been used to study the features of defect structure in ingots of the SiC-4H polytype; the ingots have featured different diameters and have been grown by the modified Lely method on seeds with deviations of several degrees from the exact orientation (0001)C in the direction 〈11\( \bar 2 \)0〉 (off-cut (0001) seeds). The slip bands observed in the crystals are extended along the [11\( \bar 2 \)0] direction and correspond to the secondary slip system of threading dislocations a/3〈11\( \bar 2 \)0〉{\( \bar 1 \)100} for hexagonal close packing (HCP) crystals. Low-angle dislocation boundaries directed along [1\( \bar 1 \)00] accommodate the disorientation of neighboring domains, which results from their mutual rotation around the [0001] axis. Enlargement of ingots leads to some increase in the dislocation density, mainly due to threading edge dislocations. The average density of micropipes is in the range of 5–20 cm−2 and practically remains unchanged as the ingot size is increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. H. Carter, Jr., R. Glass, M. Brady, D. Malta, D. Henshall, S. Muller, V. Tsvetkov, D. Hobgood, and A. Powell, Mater. Sci. Forum 353–356, 3 (2001).

    Article  Google Scholar 

  2. X. Ma, J. Appl. Phys. 99, 063513 (2006).

    Article  ADS  Google Scholar 

  3. D. D. Avrov, S. I. Dorozhkin, A. O. Lebedev, Yu. M. Tairov, and A. Yu. Fadeev, in Proceedings of the All-Russia Conference on Physics of Semiconductors and Nanostructures, Semiconductor Optical and Nanoelectronics (Makhachkala, 2009), p. 29.

  4. C. Basceri, Yu. Khlebnikov, I. Khlebnikov, C. Balkas, N. Silan Murat, H. M. Hobgood, C. H. Carter, V. Balakrishna, R. T. Leonard, A. R. Powell, V. Tsvetkov, and J. R. Jenny, Patent W02008033994 (2008).

  5. R. C. Glass, L. O. Kjellberg, V. F. Tsvetkov, J. E. Sundgren, and E. Janzen, J. Cryst. Growth 132, 504 (1993).

    Article  ADS  Google Scholar 

  6. S. Ha, N. T. Nuhfer, G. S. Rohrer, M. De Graef, and M. Skowronski, J. Cryst. Growth 220, 308 (2000).

    Article  ADS  Google Scholar 

  7. M. Katsuno, N. Ohtani, T. Aigo, T. Fujimoto, H. Tsuge, H. Yashiro, and M. Kanaya, J. Cryst. Growth 216, 256 (2000).

    Article  ADS  Google Scholar 

  8. M. Dudley, X. R. Huang, W. Huang, A. Powell, S. Wang, P. Neudeck, and M. Skowronski, Appl. Phys. Lett. 75, 784 (1999).

    Article  ADS  Google Scholar 

  9. J. Fridel, Dislocations (Pergamon, Oxford, 1964; Mir, Moscow, 1967).

    Google Scholar 

  10. P. Pirouz, Phys. Mag. A 78, 727 (1998).

    Article  ADS  Google Scholar 

  11. S. Ha, N. T. Nuhfer, G. S. Rohrer, M. De Graef, and M. Skowronski, J. Electron. Mater. 29, L5 (2000).

    Article  ADS  Google Scholar 

  12. D. D. Avrov, S. I. Dorozhkin, A. O. Lebedev, Yu. M. Tairov, A. S. Tregubova, and A. Yu. Fadeev, Fiz. Tekh. Poluprovodn. 43, 1288 (2009) [Semiconductors 43, 1248 (2009)].

    Google Scholar 

  13. D. D. Avrov, A. I. Bulatov, S. I. Dorozhkin, A. O. Lebedev, and Yu. M. Tairov, Fiz. Tekh. Poluprovodn. 42, 1483 (2008) [Semiconductors 42, 1450 (2008)].

    Google Scholar 

  14. N. Ohtani, M. Katsuno, H. Tsuge, T. Fujimoto, M. Nakabayashi, H. Yashiro, M. Sawamura, T. Aigo, and T. Hoshino, Microelectron. Eng. 83, 142 (2006).

    Article  Google Scholar 

  15. M. Syvajarvi, R. Yakimova, A.-L. Hylen, and E. Janzen, J. Phys.: Condens. Matter 11, 10041 (1999).

    Article  ADS  Google Scholar 

  16. D. Nakamura, S. Yamaguchi, I. Gunjishima, Y. Hirose, and T. Kimoto, J. Cryst. Growth 304, 57 (2007).

    Article  ADS  Google Scholar 

  17. Yu. A. Tkhorik and L. S. Khazan, Plastic Deformation and Misfit Dislocations in Heteroepitaxial Systems (Nauk. dumka, Kiev, 1983) [in Russian].

    Google Scholar 

  18. A. Powell, J. Jenny, S. Muller, H. McD. Hobgood, V. Tsvetkov, R. Lenoard, and C. Carter, Jr., J. High. Speed Electron. Syst. 16, 751 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Lebedev.

Additional information

Original Russian Text © D.D. Avrov, A.V. Bulatov, S.I. Dorozhkin, A.O. Lebedev, Yu.M. Tairov, A.Yu. Fadeev, 2011, published in Fizika i Tekhnika Poluprovodnikov, 2011, Vol. 45, No. 3, pp. 289–294.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avrov, D.D., Bulatov, A.V., Dorozhkin, S.I. et al. Mechanisms of defect formation in ingots of 4H silicon carbide polytype. Semiconductors 45, 277–283 (2011). https://doi.org/10.1134/S1063782611030055

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782611030055

Keywords

Navigation